• Title/Summary/Keyword: Gastric cancer cell line

Search Result 111, Processing Time 0.025 seconds

Effect of Tissue Factor on Invasion Inhibition and Apoptosis Inducing Effect of Oxaliplatin in Human Gastric Cancer Cell

  • Yu, Yong-Jiang;Li, Yu-Min;Hou, Xu-Dong;Guo, Chao;Cao, Nong;Jiao, Zuo-Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1845-1849
    • /
    • 2012
  • Objective: Tissue factor (TF) is expressed abnormally in certain types of tumor cells, closely related to invasion and metastasis. The aim of this study was to construct a human gastric cancer cell line SGC7901 stably-transfected with human TF, and observe effects on oxaliplatin-dependent inhibition of invasion and the apoptosis induction. Methods: The target gene TF was obtained from human placenta by nested PCR and introduced into the human gastric cell line SGC7901 through transfection mediated by lipofectamine. Stably-transfected cells were screened using G418. Examples successfully transfected with TF-pcDNA3 recombinant (experimental group), and empty vector pcDNA3 (control group) were incubated with oxaliplatin. Transwell chambers were used to show change in invasive ability. Caspase-3 activity was detected using a colorimetric method and annexin-V/PI double-staining was applied to detect apoptosis. Results: We generated the human gastric cancer cell line SGC7901/TF successfully, expressing TF stably and efficiently. Compared with the control group, invasion increased, whereas caspase-3 activity and apoptosis rate were decreased in the experimental group. Conclusion: TF can enhance the invasive capacity of gastric cancer cells in vitro. Its increased expression may reduce invasion inhibition and apoptosis-inducing effects of oxaliplatin and therefore may warrant targeting for improved chemotherapy.

The Growth Inhibition against Gastric Cancer Cell in Germanium or Soybean Sprouts Cultured with Germanium (게르마늄 및 게르마늄 분말 용해수로 재배한 콩나물의 위암세포 성장억제 작용)

  • 김은정;이경임;박건영
    • Korean journal of food and cookery science
    • /
    • v.20 no.3
    • /
    • pp.287-291
    • /
    • 2004
  • The growth inhibitory effect of germanium, or soybean sprouts cultured with germanium, on cancer cells was determined in the cultured gastric cancer cell line, AGS. The growth of AGS was significantly inhibited by the addition of 0.01-1% organic germanium (Ge-132) and germanium stone powder in MTT cytotoxicity assays. The juice from germanium treated soybean sprouts (GTS) inhibited the growth of AGS gastric cancer cells by 78-88% at concentrations of 2.5 or 5${\mu}\ell$. The juice from Seomoktae GTS revealed an especially higher growth inhibitory effect than that from the control soybean sprouts (germanium non-treated soybean sprouts, GNTS) in AGS. The results suggest that soybean sprouts cultured with germanium may exert an anticancer effect against gastric cancer cells.

Induction of Apoptosis and Cell Cycle Arrest by Dorema Glabrum Root Extracts in a Gastric Adenocarcinoma (AGS) Cell Line

  • Jafari, Naser;Zargar, Seyed Jalal;Yassa, Narguess;Delnavazi, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5189-5193
    • /
    • 2016
  • Objective: Dorema glabrum Fisch. & C.A. Mey is a perennial plant that has several curative properties. Anti-proliferative activity of seeds of this plant has been demonstrated in a mouse fibrosarcoma cell line. The aim of the present study was to evaluate cytotoxicity of D. glabrum root extracts in a human gastric adenocarcinoma (AGS) cell line and explore mechanisms of apoptosis induction, cell cycle arrest and altered gene expression in cancer cells. Materials and Methods: The MTT assay was used to evaluate IC50 values, EB/AO staining to analyze the mode of cell death, and flow cytometry to assess the cell cycle. Quantitative real-time polymerase chain reaction (qRT-PCR) amplification was performed with apoptosis and cell cycle-related gene primers, for cyclin D1, c-myc, survivin, VEGF, Bcl-2, Bax, and caspase-3 to determine alteration of gene expression. Results: Our results showed that n-hexane and chloroform extracts had greatest toxic effects on gastric cancer cells with IC50 values of $6.4{\mu}g/ml$ and $4.6{\mu}g/ml$, respectively, after 72 h. Cell cycle analysis revealed that the population of treated cells in the G1 phase was increased in comparison to controls. Cellular morphological changes indicated induction of apoptosis. In addition, mRNA expression levels of Bax and caspase-3 were increased, and of bcl-2 survivin, VEGF, c-myc and cyclin D1 were decreased. Conclusion: Our study results suggest that D. glabrum has cytotoxic effects on AGS cells, characterized by enhanced apoptosis, reduced cell viability and arrest of cell cycling.

Hypermethylation and Clinicopathological Significance of RASAL1 Gene in Gastric Cancer

  • Chen, Hong;Pan, Ying;Cheng, Zheng-Yuan;Wang, Zhi;Liu, Yang;Zhao, Zhu-Jiang;Fan, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6261-6265
    • /
    • 2013
  • Background: Recent studies have suggested that expression of the RAS protein activator like-1 gene (RASAL1) is decreased in gastric carcinoma tissues and cell lines, indicated a role in tumorigenesis and development of gastric cancer. Reduced expression of RASAL1 could result in aberrant increase of activity of RAS signaling pathways in cancer cells. However, the exact mechanism which induces down-regulation of the RASAL1 gene remains unclear. This study aimed to determine the methylation status and regulation of RASAL1 in gastric cancer. Materials and Methods: Using the methylation-specific polymerase chain reaction (MSP), the methylation status of CpG islands in the RASAL1 promoter in gastric cancers and paired adjacent non-cancerous tissues from 40 patients was assessed and its clinicopathological significance was analyzed. The methylation status of RASAL1 in gastric cancer lines MKN-28, SGC-790l, BGC-823, as well as in normal gastric epithelial cell line GES-l was also determined after treatment with a DNA methyltransferase inhibitor, 5-aza-2'-doexycytidine (5-Aza-CdR). RAS activity (GAS-GTP) was assessed through a pull-down method, while protein levels of ERK1/2, a downstream molecule of RAS signaling pathways, were determined by Western blotting. Results: The frequencies of RASAL1 promoter methylation in gastric cancer and paired adjacent non-cancerous tissues were 70% (28/40) and 30% (12/40) respectively (P<0.05). There were significantly correlations between RASAL1 promoter methylation with tumor differentiation, tumor size, invasive depth and lymph node metastasis in patients with gastric cancer (all P<0.05), but no correlation was found for age or gender. Promoter hypermethylation of the RASAL1 gene was detected in MKN-28, SGC-790l and BGC-823 cancer cells, but not in the normal gastric epithelial cell line GES-1. Elevated expression of the RASAL1 protein, a decreased RAS-GTP and p-ERK1/2 protein were detected in three gastric cancer cell lines after treatment with 5-Aza-CdR. Conclusions: Aberrant hypermethylation of the RASAL1 gene promoter frequently occurs in gastric cancer tissues and cells. In addition, the demethylating agent 5-Aza-CdR can reverse the hypermethylation of RASAL1 gene and up-regulate the expression of RASAL1 significantly in gastric cancer cells in vivo. Our study suggests that RASAL1 promoter methylation may have a certain relationship with the reduced RASAL1 expression in gastric cancer.

KLK6 Promotes Growth, Migration, and Invasion of Gastric Cancer Cells

  • Zhu, Shengxing;Shi, Jihua;Zhang, Shanfeng;Li, Zhen
    • Journal of Gastric Cancer
    • /
    • v.18 no.4
    • /
    • pp.356-367
    • /
    • 2018
  • Purpose: Kallikrein (KLK) proteases are hormone-like signaling molecules with critical functions in different cancers. This study investigated the expression of KLK6 in gastric cancer and its potential role in the growth, migration, and invasion of gastric cancer cells. Materials and Methods: In this study, we compared protein levels of KLK6, vascular endothelial growth factor (VEGF), and matrix metallopeptidase (MMP) 9 in normal gastric epithelial and gastric cancer cell lines by western blot. Fluorescence-activated cell sorting was employed to sort 2 clones of SGC-7901 cells with distinct KLK6 expression, namely, KLK6-high ($KLK6^{high}$) and KLK6-low ($KLK6^{low}$), which were then expanded. Lastly, immunohistochemical analysis was performed to investigate KLK6 expression in gastric cancer patients. Results: The expression levels of KLK6, VEGF, and MMP 9, were significantly higher in the gastric cancer cell lines SGC-7901, BGC-823, MKN-28, and MGC-803 than in the normal gastric epithelial cell line GES-1. Compared to $KLK6^{low}$ cells, $KLK6^{high}$ cells showed enhanced viability, colony-forming ability, migration, and invasion potential in vitro. Importantly, immunohistochemical analysis of a human gastric cancer tissue cohort revealed that the staining for KLK6, VEGF, and MMP9 was markedly stronger in the cancerous tissues than in the adjacent normal tissues. KLK6 expression also correlated with that of VEGF and MMP9 expression, as well as several key clinicopathological parameters. Conclusions: Together, these results suggest an important role for KLK6 in human gastric cancer progression.

Inhibitory Effects of Phenolic Alkaloids of Menispermum Dauricum on Gastric Cancer in Vivo

  • Zhang, Hong-Feng;Wu, Di;Du, Jian-Kuo;Zhang, Yan;Su, Yun-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10825-10830
    • /
    • 2015
  • The present study was conducted to investigate effects and mechanisms of action of phenolic alkaloids of Menispermum dauricum (PAMD) on gastric cancer in vivo. In vitro, cell apoptosis of human gastric cancer cell line SGC-7901 was observed using fluorescence staining. In vivo, a mice model was constructed to observe tumor growth with different doses. Cell apoptosis was examined using flow cytometry and K-RAS protein expression using Western blotting. The mRNA expression of P53, BCL-2, BAX, CASPASE-3, K-RAS was examined by real-time PCR. PAMD significantly suppressed tumor growth in the xenograft model of gastric cancer in a dose-dependent manner (p<0.01). Functionally, PAMD promoted cell apoptosis of the SGC-7901 cells and significantly increased the rate of cell apoptosis of gastric tumor cells (p<0.05). Mechanically, PAMD inhibited the expression of oncogenic K-RAS both at the mRNA and protein levels. In addition, PAMD affected the mRNA expression of the cell apoptosis-related genes (P53, BCL-2, BAX, CASPASE-3). PAMD could suppress gastric tumor growth in vivo, possibly through inhibiting oncogenic K-RAS, and induce cell apoptosis possibly by targeting the cell apoptosis-related genes of P53, BCL-2, BAX, CASPASE-3.

miR-372 Regulates Cell Cycle and Apoptosis of AGS Human Gastric Cancer Cell Line through Direct Regulation of LATS2

  • Cho, Wha Ja;Shin, Jeong Min;Kim, Jong Soo;Lee, Man Ryul;Hong, Ki Sung;Lee, Jun-Ho;Koo, Kyoung Hwa;Park, Jeong Woo;Kim, Kye-Seong
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.521-527
    • /
    • 2009
  • Previously, we have reported tissue- and stage-specific expression of miR-372 in human embryonic stem cells and so far, not many reports speculate the function of this microRNA (miRNA). In this study, we screened various human cancer cell lines including gastric cancer cell lines and found first time that miR-372 is expressed only in AGS human gastric adenocarcinoma cell line. Inhibition of miR-372 using antisense miR-372 oligonucleotide (AS-miR-372) suppressed proliferation, arrested the cell cycle at G2/M phase, and increased apoptosis of AGS cells. Furthermore, AS-miR-372 treatment increased expression of LATS2, while over-expression of miR-372 decreased luciferase reporter activity driven by the 3' untranslated region (3' UTR) of LATS2 mRNA. Over-expression of LATS2 induced changes in AGS cells similar to those in AGS cells treated with AS-miR-372. Taken together, these findings demonstrate an oncogenic role for miR-372 in controlling cell growth, cell cycle, and apoptosis through down-regulation of a tumor suppressor gene, LATS2.

Adenovirus-mediated Double Suicide Gene Selectively Kills Gastric Cancer Cells

  • Luo, Xian-Run;Li, Jian-Sheng;Niu, Ying;Miao, Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.781-784
    • /
    • 2012
  • The aim of this study was to evaluate the effect of the adenovirus-mediated double suicide gene (CD/TK) for selective killing of gastric cancer cells. Gastric cancer cells SCG7901 and normal gastric epithelial cell lines were infected by adenoviruses Ad-survivin/GFP and Ad-survivin/CD/TK. GFP expression and CD-TK were detected by fluorescence microscopy and reverse transcriptase polymerase chain reaction (RT-PCR), respectively. After treatment of the infected cells with the pro-drugs ganciclovir (GCV) and/or 5-FC, the cell growth status was evaluated by methyl thiazolyl tetrazolium assay. Cell cycle changes were detected using flow cytometry. In nude mice bearing human gastric cancer, the recombinant adenovirus vector was injected directly into the tumor followed by an intraperitoneal injection of GCV and/or 5-FC. The subsequent tumor growth was then observed. The GFP gene driven by survivin could be expressed within the gastric cancer line SCG7901, but not in normal gastric epithelial cells. RT-PCR demonstrated the presence of the CD/TK gene product in the infected SCG7901 cells, but not in the infected normal gastric epithelial cells. The infected gastric cancer SCG7901, but not the gastric cells, was highly sensitive to the pro-drugs. The CD/TK fusion gene system showed significantly greater efficiency than either of the single suicide genes in killing the target cells (P<0.01). Treatment of the infected cells with the pro-drugs resulted in increased cell percentage in G0-Gl phase and decreased percentage in S phase. In nude mice bearing SCG7901 cells, treatment with the double suicide gene system significantly inhibited tumor growth, showing much stronger effects than either of the single suicide genes (P<0.01). The adenovirus-mediated CD/TK double suicide gene driven by survivin promoter combined with GCV an 5-FC treatment could be an effective therapy against experimental gastric cancer with much greater efficacy than the single suicide gene CD/TK combined with GCV or 5-FC.

Silibinin Inhibits Proliferation, Induces Apoptosis and Causes Cell Cycle Arrest in Human Gastric Cancer MGC803 Cells Via STAT3 Pathway Inhibition

  • Wang, Yi-Xin;Cai, Hong;Jiang, Gang;Zhou, Tian-Bao;Wu, Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6791-6798
    • /
    • 2014
  • Background: To investigate the effect of silibinin on proliferation and apoptosis in human gastric cancer cell line MGC803 and its possible mechanisms. Materials and Methods: Human gastric cancer cell line MGC803 cells were treated with various concentration of silibinin. Cellular viability was assessed by CCK-8 assay andapoptosis and cell cycle distribution by flow cytometry. Protein expression and mRNA of STAT3, and cell cycle and apoptosis regulated genes were detected by Western blotting and real-time polymerase chain reaction, respectively. Results: Silibinin inhibits growth of MGC803 cells in a dose- and time-dependent manner. Silibinin effectively induces apoptosis of MGC803 cells and arrests MGC803 cells in the G2/M phase of the cell cycle, while decreasing the protein expression of p-STAT3, and of STAT3 downstream target genes including Mcl-1, Bcl-xL, survivin at both protein and mRNA levels. In addition, silibinin caused an increase in caspase 3 and caspase 9 protein as well as mRNA levels. Silibinin caused G2/M phage arrest accompanied by a decrease in CDK1 and Cyclin B1 at protein and mRNA levels.. Conclusions: These results suggest that silibinin inhibits the proliferation of MGC803 cells, and it induces apoptosis and causes cell cycle arrest by down-regulating CDK1, cyclinB1, survivin, Bcl-xl, Mcl-1 and activating caspase 3 and caspase 9, potentially via the STAT3 pathway.

Houttuynia cordata Thunberg exhibits anti-tumorigenic activity in human gastric cancer cells

  • Hong, Se Chul;Eo, Hyun-Ji;Song, Hoon-Min;Woo, So-Hee;Kim, Mi-Kyeong;Lee, Jin-Wook;Seo, Jeong-Min;Park, Su-Bin;Eom, Jung-Hye;Koo, JinSuk;Jeong, JinBoo
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.155-160
    • /
    • 2013
  • Objectives : Gastric cancer is a leading cause of cancer-related deaths, worldwide. Houttuynia cordata Thunberg (H. cordata) has been used as a medicinal plants and it has an anti-cancer activity in human colorectal cancer and leukemic cancer. However, the potential anti-cancer activity and mechanisms of H. cordata for human gastric cancer cells have not been tested so far. Thus, this study examined the biological effects of H. cordata on the human gastric cancer cell line SNU-1 and AGS. Methods : Inhibition of cell proliferation and cell cycle by H. cordata was carried out by MTT assay and Muse cell cycle analysis and the expressions of protein associated with apoptosis and cell cycle regulation were investigated with Western blot analysis. Results : In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by H. cordata in a time and dose dependent manner, Inhibition of cell proliferation by H. cordata was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bax to Bcl-2 by H. cordata. Also, H. cordata regulated the expression of cell cycle regulatory proteins such as pRb, cyclin D1, cyclin E, CDK4, CDK2, p21 and p15. Conclusion : The antiproliferative effect of H. cordata on SNU-1 and AGS gastric cancer cells revealed in this study suggests that H. cordata has intriguing potential as a chemopreventive or chemotherapeutic agent.