• Title/Summary/Keyword: Gastric antral myocyte

Search Result 2, Processing Time 0.015 seconds

[$Ca^{2+}-activated\;Cl^-$ Current in Gastric Antral Myocytes

  • Lee, Moo-Yeol;Bang, Hyo-Weon;Uhm, Dae-Yong;Rhee, Sang-Don
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.143-150
    • /
    • 1994
  • The whole-cell mode of the patch clamp technique was used to study $Ca^{2+}-activated\;Cl^-\;current$ $(I_{Cl_{Ca}})$ in gastric antral myocytes. Extracellular application of caffeine evoked $Ca^{2+}-activated\;current$. In order to isolate the chloride current from background current, all known systems were blocked with specific blockers. The current-voltage relationship of caffeine-induced current showed outward rectification and it reversed at around $E_{Cl^-}$. The shift of reversal potential upon the alteration of external and internal chloride concentrations was well fitted with results which were calculated by the Nernst equation. Extracellular addition of N-phenylanthranilic acid and niflumic acid which are known anion channel blockers abolished the caffeine induced current. Intracellular application of a high concentration of EGTA also abolished this current. Application of c-AMP, c-GMP, heparin, or $AIF^-_4$ made no remarkable changes to this current. Sodium replacement with the impermeable cation N-methylglucamine or with $Cd^{2+}$ rarely affected this current. From the above results it is suggested that the caffeine induced current was a $Cl^-$ current and it was activated by intracellular $Ca^{2+}$.

  • PDF

Effects of Arachidonic Acid on the Calcium Channel Current $(I_{Ba})$ and on the Osmotic Stretch-induced Increase of $I_{Ba}$ in Guinea-Pig Gastric Myocytes

  • Xu, Wen-Xie;Kim, Sung-Joon;So, In-Suk;Suh, Suk-Hyo;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.435-443
    • /
    • 1997
  • We employed the whole-cell patch clamp technique to investigate the effects of arachidonic acid (AA) on barium inward current through the L-type calcium channels ($I_{Ba}$) and on osmotic stretch-induced increase of $I_{Ba}$ in guinea-pig antral gastric myocytes. Under isosmotic condition, AA inhibited $I_{Ba}$ in a dose-dependent manner to $91.1{\pm}1.4,\;72.0{\pm}3.2,\;46.0{\pm}1.8,\;and\;20.3{\pm}2.3%$ at 1, 5, 10, 30 mM, respectively. The inhibitory effect of AA was not affected by 10 ${\mu}M$ indomethacin, a cyclooxygenase inhibitor. Other unsaturated fatty acids, linoleic acid (LA) and oleic acid (OA) were also found to suppress $I_{Ba}$ but stearic acid (SA), a saturated fatty acid, had no inhibitory effect on $I_{Ba}$. The potency sequence of these inhibitory effects was AA ($79.7{\pm}2.3%$) > LA ($43.1{\pm}2.7%$) > OA ($14.2{\pm}1.1%$) at 30 ${\mu}M$. On superfusing the myocyte with hyposmotic solution (214 mOsm) the amplitude of $I_{Ba}$ at 0 mV increased ($38.0{\pm}5.5%$); this increase was completely blocked by pretreatment with 30 mM AA, but not significantly inhibited by lower concentrations of AA (1, 5 and 10 ${\mu}M$) (P>0.05). Unsaturated fatty acids shifted the steady-state inactivation curves of $I_{Ba}$ to the left; the extent of shift caused by AA was greater than that caused by LA. The activation curve was not affected by AA or LA. The results suggest that AA and other unsaturated fatty acids directly modulate L-type calcium channels and AA might modulate the hyposmotic stretch- induced increase of L-type calcium channel current in guinea-pig gastric smooth muscle.

  • PDF