• 제목/요약/키워드: Gasoline of-gas

검색결과 416건 처리시간 0.031초

4사이클 가솔린기관의 배기조성에 관한 연구 -$NO_{\chi}$의 비평형 계산- (Study on Exhaust Gas Composition in the Four Ctcle Gasoline Engind -Nonequilibrium Calculation of $NO_{\chi}$ -)

  • 이성열;오영일
    • 대한기계학회논문집
    • /
    • 제1권4호
    • /
    • pp.171-181
    • /
    • 1977
  • This paper is aiming at calculating NOx concentration, which is one of the harmhul components of emission from the gasoline engine, formed in the combustor through the presess of combustion. Instantaneous temperature and concentration of each components for each division can be determined by the solution of simulatneous equation of reaction equation and equation of energy conservation, inputting the estimated temperature with a considerably wide rage of temperature. After determining instantaneous temperature and instantanous concentration of each components, the nonequilibrium calculation is performed based on the reaction kinetics in order to determine NOx concentration. To summarize the result abtained from the above method ;through the passage of NO concentration, NO concentration is the highest in the first division and it is gradually decreasing through the following divisions In the final division, NO concentation is the lowest.

LNG를 이용한 농용엔진의 성능특성에 관한 연구 (A Study on Performance Characteristics of Farm Engine Using LNG)

  • 백이;조기현
    • 한국산업융합학회 논문집
    • /
    • 제8권1호
    • /
    • pp.19-23
    • /
    • 2005
  • This study was performed to find out performance characteristics and develop LNG engine. this system was designed and manufactured by modification of a diesel using the LNgas. The engine was manufactured to be able to change the compression ratio by changing thickness of the gasket. The results are summarized brake power and torque of the engine increased when compression ratio of the engine increased. The engine output showed more power with gasoline by 5-10% then LNG under compression ratio of 9.5.and maximum brake thermal effeiency was noted when air-fuel ratio was 15.5. The concentrations of NOx, CO and HC in the exhaust gas showed lower values with the engine fueled LNG then gasoline.

  • PDF

가솔린 기관용 초음파 미립화장치의 타당성에 관한 연구 (I) - 연료 미립화를 중심으로 - (A Study on the Propriety of Ultrasonic Atomization Apparatus for the Gasoline Engine (l) - In the Case of the Atomization of Fual -)

  • 조규상
    • 오토저널
    • /
    • 제9권4호
    • /
    • pp.41-49
    • /
    • 1987
  • It is an experimental study to improve the characteristics of combustion and exhaust emission gas in the gasoline engine. These characteristics are influenced by the fuel droplet size. To improve these characteristics, we make the ultrasonic atomization apparatus, and compare with the commercial carburetor. The results obtained are as follows: 1. Maximum atomization quantity is obtained by the vibrator of resonancy frequency 1.65MHz in the ultrasonic atomization apparatus. 2. With ultrasonic atomization apparatus, more than 99% of atomization rate can be obtained regardless of intake air temperature, velocity, and air-fuel ratio. 3. Atomization rate of the commercial carburetor increases with the air-fuel ratio and intake air temperature. 4. Difference of atomization rate between the ultrasonic atomization apparatus and the commercial carburetor increases with decreasing air-fuel ratio. 5. Droplet size is about 1-5.mu.m at the ultrasonic atomization apparatus, and 80-150.mu.m at the commercial carburetor, which indicates the ultrasonic atomization apparatus is excellent in atomization.

  • PDF

실린더 헤드의 비정상 열전달 및 열응력 해석 (Unsteady heat transfer and thermal stress analysis of a gasoline engine cylinder head)

  • 박진무;임영훈;김병탁
    • 오토저널
    • /
    • 제12권3호
    • /
    • pp.41-52
    • /
    • 1990
  • In this study are determined the unsteady temperature and thermal stress fields for a domestic 4-cylinder, 4-cycle gasoline engine cylinder head by the three-dimensional finite element method. A representative part of the cylinder head is modelled as a combination of hexahedron isoparametric elements, and the time-dependent temperature and the heat transfer coefficient of the gas are imposed as the thermal boundary conditions for the engine speeds of 500 rpm and 2000 rpm. The obtained results, which are represented graphically, indicate that the amplitudes of temperature fluctuation during a cycle are about 10.deg. C and 3.deg. C respectively on the surface of combustion chamber, and the maximum temperature fields occur at 30.deg. , 10.deg. respectively before the initiation of the exhaust stroke. Thermal stress fields due to non-uniform temperature distributions show that compressive stress is much larger than tensile stress throughout a cycle. It is also found that the compressive stress varies with substantial amplitude between the exhaust port and ignition plug hole, and the high tensile stress with small fluctuation occurs between exhaust port and the adjacent head bolt hole.

  • PDF

4실린더 4사이클 가솔린 기관에서 EGR율이 기관성능 및 유해배출물에 미치는 영향에 관한 연구 (A Study on the Effects of EGR ratio on Engine Performance and Emission in a 4 Cylinder 4 Cycle Gasoline Engine)

  • 김태훈;조진호
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.3-15
    • /
    • 1993
  • A multi-cylinder four cycle spark ignition engine equipped with on exhaust gas recirculation(EGR) system to reduce nitric oxide emission and to improve fuel consumption rate has been comprehensively simulated In a computer program including intake and exhaust manifolds. To achieve these goals, this program was tested against experiments performed on a standard production four cylinder four cycle gasoline engine with EGR system. As EGR rate Increased, the maximum temperature of combustion chamber and NO omission concentration decreased under each driving condition. But the emission concentration of CO didn't change much through whole district in spite of the increase of EGR rate. Fuel consumption rate improved under each driving condition according to the increased of EGR rate until 10 percent EGR rate. Therefore the degree of EGR depend not only on the NO emission but also on the economy and the engine performance criteria of the engine.

  • PDF

가솔린, LPG, 디젤 차량에서 윤활유에 따른 배출가스 및 입자상물질 (Exhaust Gas Emission and Particulate Matter (PM) from Gasoline, LPG and Diesel Vehicle Using Different Engine Oil)

  • 장진영;이영재;권오석;우영민;조종표;김강출;표영덕;이민섭
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.144-151
    • /
    • 2016
  • This study effect of engine oils on regulated fuel economy and emissions including particulate matter (PM) to provide basic data for management of engine oil in vehicles. Three engine oils (Group III base oil, Group III genuine oil with additive package and synthetic oil with poly alpha olefins (PAOs)) were used in one gasoline, one LPG(liquefied petroleum gas) and two diesel vehicles. In the case of diesel vehicles, one is a diesel vehicle without DPF (diesel particulate filter) other is a diesel vehicle with DPF. In this study, the US EPA emission test cycle FTP-75, representing city driving, was used. HORIBA, PIERBURG, and AVL gas analyzers were used to measure the fuel economy and regulated emissions such as CO, NOx, and THC. The number of PM was measured using a PPS (pegasor particle sensor). And, the shape of PMs was analyzed by SEM (scanning electron microscope). The effects of oil type on fuel economy, exhaust gas, and PM were not significant because engine oil consumption by evaporation and combustion in the cylinder is very tiny. Fuel and vehicle type were dominant factors in fuel economy and emissions. HC emission from gasoline vehicles was higher than that from other vehicles and NOx emission from diesel vehicles was higher than that from other vehicles. The number of PM was not affected by the engine oil, but by the driving pattern and fuel. The shapes of the PM, sampled from each vehicle using any test engine oil, were similar.

디젤엔진 배기가스의 저감에 관한 연구 (A Study on the Reduction of Diesel-Engine Emissions)

  • 허윤복;정순석;김광수
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2012년 추계학술대회
    • /
    • pp.245-252
    • /
    • 2012
  • Internal engine is the main power source of vehicle and is the main source of air pollution. To satisfy this getting rigorous emission regulation, it must be solved simultaneously the dilemma of reducing emission gas and increasing heat efficiency. Diesel engine is preferred compare with gasoline engine in aspect of energy consumption but it must be solved reducing the containing of NOx, CO and HC. In this study 1. Looking for alternative of performance improvement of Exhaust Gas Recirculation(EGR) which is emission gas reduction system, 2. Reducing malfunction of controlling emission gas 3. Made possible precision control.

  • PDF

성층연소 직분식 엔진에서의 propane과 n-butane의 연소 및 배기특성 비교 (Comparison of Combustion and Emission Characteristics of Propane and n-butane in a Stratified DISI Engine)

  • 주용준;정진영;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.97-100
    • /
    • 2014
  • The combustion and emission characteristics of propane and n-butane which are the main components of LPG were compared with gasoline. The experiment was performed in a stratified DISI engine under lean combustion conditions. Mixtures of propane and n-butane wre more homogeneous because propane and n-butane have better evaporation characteristics. As a result, combustion speeds of n-butane and propane were slower, and emission levels of NOx and PM were lower. However, in spite of better evaporation, PM from propane was higher.

  • PDF

자동차용 LPG 펌프의 연료조건에 따른 성능특성에 관한 연구 (A Study on Performance Characteristics According to the Fuel Conditions for a Fuel Pump in LPG Engine)

  • 박철웅;김창업;최교남
    • 대한기계학회논문집B
    • /
    • 제32권4호
    • /
    • pp.266-274
    • /
    • 2008
  • The need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as Liquefied Petroleum Gas(LPG) which is able to meet the limits of better emission levels without many modifications to current engine design. LPG has a high vapor pressure and lower viscosity and surface tension than diesel and gasoline fuels. These different fuel characteristics make it difficult to apply it for the conventional gasoline or diesel fuel pump directly. In this study, experiments are performed to get performance and efficiency of the fuel pump at different condition as temperature, rotating speeds, composition of fuel. The characteristics of fuel pump is affected by cavitation due to the variation of temperature and composition.

천연가스 자동차의 Emission 배출특성 및 저감법 (Emission characteristics of Natural Gas Fueled Vehicl and its Purification Technologies)

  • 최병철;이지연;손건석;이귀영
    • 한국자동차공학회논문집
    • /
    • 제5권2호
    • /
    • pp.127-135
    • /
    • 1997
  • Experiments have been conducted to investigate emission characteristics of compressed natural gas fueled vehicle(CNGV) by the FTP 75 mode test. Its purification technologies were also investigated. It was found that CNGV was operated on the rich A/F condition by comparison with gasoline vehicle. The Pd catalyst was higher in methane purification performance than Pt and Pd/Pt/Rh catalysts. Up to 60% portion of the accumulative HC emissions(that contains above 80% methane) form CNGV occurs during the first phase of the FTP 75 mode. CO that is exhausted at rich conditions of the air-fuel ratio more than lean conditions should be used for the catalytic reduction of NOX, because the methane is not the effective reduction for NOX in the CNGV with 3-way catalyst system.

  • PDF