• Title/Summary/Keyword: Gasoline Vehicle

Search Result 254, Processing Time 0.024 seconds

Source Apportionment of Fine Particulate Matter (PM2.5) in the Chungju City (충주시 초미세먼지 (PM2.5)의 배출원 기여도 추정에 관한 연구)

  • Kang, Byung-Wook;Lee, Hak Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.437-448
    • /
    • 2015
  • The purpose of this study is to present the source contribution of the fine particles ($PM_{2.5}$) in Chungju area using the CMB (chemical mass balance) method throughout the four seasons in Korea. The Chungju's annual average level of $PM_{2.5}$ was $48.2{\mu}g/m^3$, which exceeded two times higher than standard air quality. Among these particles, the soluble ionic compounds represent 54.2% of fine particle mass. Additionally, the OC concentration in Chungju stayed similar to other domestic cities, while the EC concentration decreased significantly compared to other domestic/international cities. The concentration of sulfur represented the highest composition (8%) among the fine particle compounds. According to the CMB results, the general trend of the $PM_{2.5}$ mass contributors was the following: secondary aerosols (50.5%: ammonium sulfate 26.5% and ammonium nitrate 24.0%) > gasoline vehicle (18.3%) > biomass burning (11.0%) > industrial boiler (6.0%) > diesel vehicles (4.4%). The contribution of the secondary aerosols was the main cause than others. This impact is assumed to be emitted from air pollutants of urban cities or neighbor countries such as China.

Improvement of Gasoline Engine Performance by Modifying the Engine Cooling System (엔진 냉각계 개선을 통한 가솔린엔진의 성능 향상)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.1-10
    • /
    • 1998
  • In this paper, we investigated the improvement of characteristics of knock, emission and fuel consumption rate by optimizing the location and size of water transfer holes in cylinder head gasket without change of engine water jacket design itself. The cooling system was modified in the direction of reducing the metal temperature in the head and increasing the metal temperature in the block. The optimization of water transfer holes in cylinder head gasket was obtained by "flow visualization test". The water transfer holes were concentrated in front side of the engine in order to reduce thermal boundary layer in the water jacket of No. 2 and No. 3 combustion changer in the cylinder head, which would have a large knock intensity, and increase thermal boundary layer in the water jacket of the cylinder block. When the modified coolant flow pattern was applied as proposed in this paper, the knock characteristic was improved. The spark timing was advanced up to 2$^{\circ}$ in low and middle speed range at a full load. In addition, HC emission at MBT was reduced by 5.2%, and the fuel consumption rate was decreased up to 1% in the driving condition of 2400 rpm and 250 KPa. However, since this coolant flow pattern mentioned in this paper might deteriorate the performance of vehicle cooling system due to the coolant flow rate reduction, a properly optimized point should be obtained. obtained.

  • PDF

A Study on Cyclic Variation by Idling in Gasoline Vehicle (가솔린자동차의 무부하 운전에서 사이클변동에 관한 연구)

  • Han, Sung-Bin;Kim, Sung-Mo
    • Journal of Energy Engineering
    • /
    • v.18 no.3
    • /
    • pp.156-162
    • /
    • 2009
  • Cylinder-pressure based combustion analysis provides a mechanism through which a combustion researcher can understand the combustion process. This paper was to identify the most significant sources of cycle-to-cycle combustion variability in a spark ignition engine at idle. To analyse the cyclic variation in the test engine, the burn parameters are determined on a cycle-to-cycle basis through analysis of the engine pressure data. The burn rate analysis program was used in the analysis of the data. Burn parameters were used to determine the variations in the input parameter-i.e., fuel, air, residual mass, and so on.

The effect of land use characteristics on heavy metal contaminations of sediments from some gullypot catchments in Seoul (주요산업활동 유형에 따른 서울시 도로변 하수퇴적물의 중금속오염 특성)

  • 이평구;최상훈;김성환;윤성택
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.28-32
    • /
    • 2000
  • There are many different chemical pollutants that originate from atmospheric deposition and transportational activities along roads. This paper review the characteristics of heavy metal pollution, relationships between land use and pollutant load in urban area. Four land use areas in Seoul were selected for sampling and study with different characteristics during the period from April 1998 and February 2000. A series of studies have been carried out concerning the physicochemical characteristics of the sediments settling down in a gully pot to evaluate the contamination for heavy metals. The sediment samples from gully pots were characterized by the chemical extraction experiments. Sediments are characterized by very high concentrations of heavy metals, probably because of a long-term accumulation of vehicle- and industrial-related pollutants. The characteristics of heavy metal pollution show that each land use has different sources of contaminations. Mean Zn concentration in Yeouido and Junggu areas is 2-3 times higher than those in Dobonggu area. This suggests that Zn may be derived from the source of automobile traffic. The mean concentrations of Cu and Cr are very significantly high in Junggu and Gurogu areas and indicate that the industrial activities may contribute to the accumulation of Cu and Cr in sediments. The low Pb levels throughout the whole study areas in Seoul can be accounted for the use of unleaded gasoline since 1987.

  • PDF

Compressor BPF noise reduction for an automotive turbocharger (차량용 터보차져의 컴프레서 BPF 소음 저감)

  • Park, Ho-Il;Eom, Sang-Bong;Seo, Ju-Bong;Lee, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.851-856
    • /
    • 2012
  • Automotive turbochargers have become common in gasoline engines as well as diesel engines. They are excellent devices to effectively increase fuel efficiency and power of the engines, but they unfortunately cause several noise problems. The noises are classified into mechanical noises induced from movement of a rotating shaft and aerodynamic noises by air flow in turbochargers. The mechanical noises are whine and howling noises, and the aerodynamic noises are BPF (blade-passing frequency), pulsation, surge, some special frequency noises. These noises are bothering passengers because their levels are higher or their frequencies are clearly separated from engine or vehicle noises. The noise investigated in this paper is a BPF noise induced by compressor wheels, whose frequency is the multiplication of the number of compressor wheel blades and its rotational speed. The noise is strongly dependent upon the geometry of wheels and the number of blades. This study tried to apply a groove close to the inlet side of compressor wheels in order to reduce the BPF noise. The groove has successfully reduced the noise of narrow band frequency of a turbocharger. It shows that the groove could reduce the wide band frequency noise, the compressor BPF noise with a best shape of the groove.

  • PDF

Design of HEV-Relay to Improve Impact and Bounce Characteristics (충격 및 바운스 특성 향상을 위한 HEV-Relay의 설계)

  • Ko, Youn-Ki;Cho, Sang-Soon;Huh, Hoon;Lee, Sang-Yoeb;Park, Hong-Tae;Oh, Il-Sung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.491-496
    • /
    • 2008
  • A HEV-relay plays a significant role as a mechanical switch which determines the operation of a gasoline engine or an electric motor in a hybrid electric vehicle (HEV). The HEV-relay has critical two problems in the operating process. First, the unstable current can occur in the operating process of the HEV-relay due to the severe bounce between moving and fixed electrode. Second, noises occur due to impact between electrodes in HEV-relay. In this research, spring properties such as stiffness and initial compression force, and electrode shape are designed to reduce the bounce time and noises caused by impact between moving and fixed electrode. The operating process of HEV-relay is simulated using LS-DYNA3D as explicit finite element code. The optimum spring properties are determined using the response surface method (RSM) as the design methodology, and the electrode shape is newly designed through the modifying the stiffness of moving and fixed electrode.

  • PDF

VOCs Emission Characteristics and Mass Contribution Analysis at Wanju Industrial Area (완주지역의 VOCs 배출특성에 따른 공단지역과 일반지역의 기여도 분석)

  • Kim, Deug-Soo;Yang, Go-Soo;Park, Bi-O
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.562-573
    • /
    • 2008
  • Concentrations of volatile organic compounds (VOCs) measured from the local industrial sources in Wanju industrial complex during June $2007{\sim}January$ 2008. The samples were collected from the primary sources (6 emission points) in 4 major factories in Wanju industrial complex as well as two general sources in Wanju County to elucidate the abundances of speciated VOCs and their spacial and temporal distributions depending on source bases. Industrial sources are as follows; fabricated metal manufacture, motor vehicle manufacture, rubber and plastic manufacture, and chemical manufacture factories. Two general source samples were collected from gasoline gas station and dry cleaning shop in urban area. In order to understand the near source influence at receptor, samples from the two receptor sites (one is at center of the industrial complex and the other site is at distance residential area downwind from the center) were collected with sample canister, and analyzed by using GC/MSD. The concentrations from different sources were compared and discussed. The mass contributions of the speciated VOCs to total VOCs measured from industrial sources and ambient ai r at two receptors were presented and discussed.

Development of the vac Source Profile using Collinearity Test in the Yeosu Petrochemical Complex (여수석유화학산단의 공선성 시험을 이용한 VOC 오염원 분류표 개발)

  • Jeon Jun-Min;Hur Dang;Hwang In Jo;Kim Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.315-327
    • /
    • 2005
  • The total of 35 target VOCs (volatile organic compounds), which were included in the TO-14, was selected to develop a VOCs' source profile matrix of the Yeosu Petrochemical Complex and to test its collinearity by singular value decomposition(SVD) technique. The VOCs collected in canisters were sampled from 12 different sources such as 8 direct emission sources (refinery, painting, wastewater treatment plant, incinerator, petrochemical processing, oil storage, fertilizer plant, and iron mill) and 4 general area sources (gasoline vapor emission, graphic art activity, vehicle emission, and asphalt paving activity) in this study area, and then those samples were analyzed by GC/MS. Initially the resulting raw data for each profile were scaled and normalized through several data treatment steps, and then specific VOCs showing major weight fractions were intensively reviewed and compared by introducing many other related studies. Next, all of the source profiles were tested in terms of degree of collinearity by SVD technique. The study finally could provide a proper VOCs' source profile in the study area, which can give opportunities to apply various receptor models properly including chemical mass balance (CMB).

Development of a Lifting Utility with Balance-controlled Platform (작업대 수평유지식 과수원 고소작업차 개발)

  • Jang, Ik-Joo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.171-179
    • /
    • 2011
  • Facing the current hikes of labor wage and high oil price, it is needed to have energy-saving machinery which also enables us precise farm operations. Thus, it was necessary to develop a safe machine which allows secure and pleasant works along orchard slopes. In this study, a lifting utility with balance-controlled platform was developed. The platform utility could maintain to level the workbench while driving along slopes. Even the machine body was driven at the tilt angle ranges of ${\pm}20^{\circ}$, the platform bench could be maintained within ${\pm}0.5^{\circ}$ of a gimbal angle. In addition, the machine lifted up to 2.0 m using an electric-hybrid driving mechanism with a low noise. A tandem hybrid power source was developed with a DC 72 V, 100 AH for the Deep-Cycle batteries, charged with 3.5 kW gasoline generator as an auxiliary power source. HST, which is one of the CVT's, was adopted as a transmission device, and a crawer track was used for the safety of the vehicle against tip-over. The maximum lifting height of platform was is 2,500 mm, and the maximum extendable width was 2,900 mm.

A Basic Study on Combustion Characteristics of Radical Ignition Sub-chamber Type CNG DI Engine (라디칼 점화 부실 혼합형 CNG DI 엔진의 연소특성에 관한 기초연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Lim, Choon-Mee
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • After the recent fabrication of diesel vehicle exhaust gas by Volkswagen, nitrogen oxides ($NO_x$) and particulate matter (PM) are drawing attention as representative pollutants included in exhaust gas. When gasoline and diesel fuels are combusted through direct injection into a combustion chamber at high pressure, PM emission is actually increased. To find a solution to this problem, a basic study was conducted to derive an optimized variable for combustion of compressed natural gas (CNG) by applying CNG, acknowledged as a clean fuel, to direct injection system. The essence of this study is in the introduction of a radical ignition technology for compressed natural gas (RI-CNG) in a sub-chamber type engine. The direct injection system was applied to a sub-chamber to remove residual gas from previous combustion cycle. In addition, optimal mixer distribution was achieved by precisely setting ignition timing based on fuel injection timing and excess air ratio.