• 제목/요약/키워드: Gasoline Engine

검색결과 751건 처리시간 0.023초

차량화재 안전설계를 위한 휘발유/에탄올 혼합연료의 연소생성물 배출 특성 (Emission Characteristics of Gasoline/ethanol Mixed Fuels for Vehicle Fire Safety Design)

  • 김신우;이의주
    • 한국안전학회지
    • /
    • 제34권1호
    • /
    • pp.27-33
    • /
    • 2019
  • Combustion characteristics of gasoline/ethanol fuel were investigated both numerically and experimentally for vehicle fire safety. The numerical simulation was performed on the well-stirred reactor (WSR) to simulate the homogeneous gasoline engine and to clarify the effect of ethanol addition in the gasoline fuel. The simulating cases with three independent variables, i.e. ethanol mole fraction, equivalence ratio and residence time, were designed to predict and optimized systematically based on the response surface method (RSM). The results of stoichiometric gasoline surrogate show that the auto-ignition temperature increases but NOx yields decrease with increasing ethanol mole fraction. This implies that the bioethanol added gasoline is an eco-friendly fuel on engine running condition. However, unburned hydrocarbon is increased dramatically with increasing ethanol content, which results from the incomplete combustion and hence need to adjust combustion itself rather than an after-treatment system. For more tangible understanding of gasoline/ethanol fuel on pollutant emissions, experimental measurements of combustion products were performed in gasoline/ethanol pool fires in the cup burner. The results show that soot yield by gravimetric sampling was decreased dramatically as ethanol was added, but NOx emission was almost comparable regardless of ethanol mole fraction. For soot morphology by TEM sampling, the incipient soot such as a liquid like PAHs was observed clearly on the soot of higher ethanol containing gasoline, and the soot might be matured under the undiluted gasoline fuel.

가솔린 엔진의 성능, 연비, 배출 가스를 동시에 고려한 시뮬레이션 기반 흡기 다기관 길이 최적화 (Simulation-based Intake Manifold Runner Length Optimization for Improving Performance, Fuel Consumption and Emission of a Gasoline Engine)

  • 강용헌;최동훈
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.62-67
    • /
    • 2010
  • Exhausting fossil fuel and increasing concern of air pollution have brought on the change of the focus of developing new vehicles from performance to fuel economy and emission. The gasoline engines adopting the naturally aspirated way use the throttle-body for engine load control. Therefore, its pumping loss increases more than that of the diesel engine, and also mostly operating in a partial load condition has bad influence on fuel economy and emission. In these days, the continuous variable valve timing system and variable induction system are adopted in order to improve fuel consumption and emission. In this study, we optimize the runner length and operate region of variable induction system to simulataneously improve the performance, fuel economy, and emission of gasoline engine with employing GT-Power as a CAE tool for engine analysis and PIAnO as PIDO tool for process integration and design optimization.

하이브리드용 가솔린엔진의 EGR을 통한 연비향상에 관한 연구 (Study on Fuel Consumption Improvement in SI Engine with EGR for Hybrid Electric Vehicle)

  • 박철웅;최영;김창기
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.128-135
    • /
    • 2008
  • EGR(exhaust gas recirculation) is considered as a most effective method to reduce the NOx emissions. But high EGR tolerance is always pursued not only for its advantages of the pumping loss reduction and fuel economy benefit in Gasoline-Hybrid engine. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR on fuel efficiency, combustion stability, engine performance and exhaust emissions. With optimal EGR rates, the fuel consumption was improved by 4%. This improvement was achieved while a reduction in NOx emissions of 75% was accomplished. Increase of EGR gas temperature causes the charge air temperature to affect the knock phenomenon and moreover, the EGR valve lift changes for the same control signal.

가솔린엔진의 부하(負荷)에 따른 실린더 벽면 온도특성(溫度特性)에 관(關)한 연구(硏究) (An Experimental Study on the Cylinder Wall Temperature Characteristics for Load Variations in a Gasoline Engine)

  • 권기린;고장권;홍성찬
    • 동력기계공학회지
    • /
    • 제3권1호
    • /
    • pp.16-22
    • /
    • 1999
  • The purpose of this study is to prevent the stick, scuffing, scratch between piston and cylinder, is to contribute the piston design such as piston profile, clearance by calculating reaction force by over-lap of piston skirt, as measuring the temperature distributions of cylinder wall. The experiment has been peformed to obtain data during actual engine operation. Temperature gradient in peripheral and axial distributions of cylinder wall according to torque and speed of engine were measured by use of an 800cc class gasoline engine. The results obtained are summarized as follows ; 1) The temperature of cylinder wall at TDC was about $50{\sim}75^{\circ}C$ higher than temperature of cooling water. 2) The rear side temperature of top dead center was $141^{\circ}C$(1/4 load) in axial distribution, whereas the rear side of midway position temperature was $98^{\circ}C$. 3) The temperature of cylinder wall increased in according to rising temperature of cooling water. 4) The thrust side temperature of cylinder wall was about $15^{\circ}C$ in all load test. 5) The rear side temperature of top dead center was $159^{\circ}C$ (1/2 load) in peripheral distribution, it was about $39^{\circ}C$ higher than thrust side temperature.

  • PDF

PFI Dual Injection 엔진의 연료 분사각도와 분무각에 따른 엔진 내부 유동 및 연료 거동 특성 (Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Fuel Injection Angle and Cone Angle in the PFI Dual Injection Engine)

  • 이승엽;정진택;박영준;유철호;김우태
    • 한국자동차공학회논문집
    • /
    • 제23권2호
    • /
    • pp.221-229
    • /
    • 2015
  • The PFI dual injection engine using one injector per an intake port was developed for solving the DISI engine cost problem. Excellent fuel atomization and targeting of the PFI dual injection engine made enhancement on the fuel efficiency and engine power. In order to develop a PFI dual injection engine, characteristics of the in-cylinder flow and fuel behavior with respect to fuel injection angle and cone angle of the PFI dual injection engine was investigated. Numerical calculation was conducted to analyze 3D unsteady in-cylinder flow and fuel behavior using STAR-CD. The engine operating condition was 2,000rpm at WOT. As a result, the amount of intake air, evaporated fuel and fuel film according to injection angle and cone angle were presented. The results were influenced by interaction between injected fuel and intake port wall.

직분식 가솔린기관 인젝터의 연료 분무 특성 (Fuel Spray Characteristics of GDI Injector)

  • 권상일;이창식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.194-201
    • /
    • 2000
  • This paper is intended to analyze the macroscopic behavior and transient atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. Time-resolved droplet axial and radial velocity components and droplet diameter were measured at many probe positions in both axial and radial directions by a two-component phase Doppler particle analyzer (PDPA). In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDI engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

  • PDF

SPRAY STRUCTURE OF HIGH PRESSURE GASOLINE INJECTOR IN A GASOLINE DIRECT INJECTION ENGINE

  • Lee, Chang Sik;Chon, Mun Soo;Park, Young Cheol
    • International Journal of Automotive Technology
    • /
    • 제2권4호
    • /
    • pp.165-170
    • /
    • 2001
  • This study is focussed on the investigation of spray characteristics from the high pressure gasoline injector for the application of gasoline direct injection engine. For the analysis of spray structure of high pressure gasoline injector; the laser scattering method with a Nd-Yag laser and the Phase Doppler particle analyzer system were applied to observe the spray development and the measurement of the droplet size and velocity of the spray, respectively. Also spatial velocity distribution of the spray droplet was measured by use of the particle image velocity system. Experimental results show that high pressure gasoline injector shapes the hollow-cone spray, and produce the upward ring shaped vortex on the spray surface region. This upward ring shaped vortex promotes the secondary atomization of fuel droplets and contributes to a uniform distribution of fuel droplets. Most of fuel droplets are distributed under 31$\mu m$ of the mean droplet size (SMD) and the frequency distribution of the droplet size under 25$\mu m$ is over 95% at 7 MPa of injection pressure. According to the experimental results of PIV system, the flow patterns of the droplets velocity distribution in spray region are in good agreement with the spray macroscopic behaviors obtained from the visualization investigation.

  • PDF

가솔린 인젝터의 연료 분무 미립화 특성에 미치는 분사 압력의 영향 (Effect of Injection Pressure on Atomization Characteristics of Fuel Spray in High-Pressure Gasoline Injector)

  • 이창식;최수천;김민규;권상일
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.555-560
    • /
    • 2000
  • This paper describes the macroscopic behavior and atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. The atomization characteristics of gasoline spray such as mean diameter and mean velocity of droplet were measured by the phase Doppler particle analyzer system. In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDl engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

대형디젤기관에 미치는 습윤식 에어 필터의 영향 (An Effect of Wet Type Air Filter in Heavy-Duty Diesel Engine)

  • 김미수;나완용;오용석
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.98-103
    • /
    • 2004
  • Diesel engine offers superior fuel consumption than gasoline engine of equivalent capacity. For this reason, diesel engines are widely used in heavy duty transport applications. Specially, it has been many years that exhaust gases from gasoline automobile rather than from diesel is the major object concerned by Korea and other countries, and it is strongly required on the reduction techniques on harmful NOx, Soot, CO, He. Thus, this paper focused on the emission reduction and target for this paper is heavy-duty diesel engine equipped with power filter such as wet type air cleaner. In this paper, the performance, exhaust emissions(CO, THC, NOx, Soot) and noise of heavy-duty diesel engine were measured at maximum load condition and the range of 1,000∼2,200rpm. The smoke was measured at FAS(Free Accel Smoke) test mode.

경승용차용 가솔린 기관의 성능향상에 관한 이론 및 실험적 연구(제2보) - 이론 해석을 중심으로 (An Analytical and Experimental Study on the Improvement of Performances of a Gasoline Engine of the Light Passenger Car (Second Paper))

  • 윤건식;서문진
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.62-74
    • /
    • 2001
  • In this study, the prediction of performances and emissions of the gasoline engine of a light passenger car has been accomplished. The method of characteristics including friction, heat transfer, area change and entropy gradients was used to analyze the flow in the intake and exhaust systems. For in-cylinder calculation, the single-zone model was adopted for the periods of the intake, exhaust, compression and the expansion of the burnt gas and the 2-zone expansion model was applied to the period of combustion process. The simulation program was verified by comparison with the experimental values both for the naturally aspirated engine and the turbocharged engine showing good agreements. Using the simulation program, multi-valve system and turbocharging were examined as a means of increasing engine Performances.

  • PDF