• Title/Summary/Keyword: Gaseous ozone

Search Result 64, Processing Time 0.029 seconds

Concentrations of Air Pollutants Measured at Kosan during ACE-Asia Intensive Observation Period (ACE-Asia 집중관측기간에 제주고산에서 측정한 대기오염물질의 농도 분포특성)

  • ;;;;Jianzhen Yu;Keith Bower
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.6
    • /
    • pp.487-501
    • /
    • 2002
  • The concentrations of gaseous (NO$_{x}$, SO$_2$, and $O_3$) and particulate (Elemental Carbon, EC and Organic Carbon, OC) pollutants were measured to evaluate the air quality of Kosan. Samples were taken at Kosan during ACE-Asia (Asian Pacific Regional Aerosol Characterization Experiment) IOP (Intensive Observation Period) (2001. 3. 21~2001. 5. 5). The mean concentrations of $O_3$(46.3$\pm$10.4 ppb) is higher than those at urban area such as Seoul and Busan in Korea. On the other hand, the mean concentrations of other gaseous species, NO$_{x}$(4.73$\pm$3.42 ppb) and SO$_2$(0.62$\pm$0.63 ppb) are lower than those at great cities. So we concluded that there are a few primary sources emitting atmospheric pollutants. The concentration of EC is higher and the concentration of OC is similar with or higher than those at other background sites. The recent EC concentration is higher than those measured before at Kosan. We concluded that there are more primary sources than other background sites and the amount of primary source have increased recently in Jeju. Backward trajectory and co..elation analysis were used to study where the air masses originated and distinguish the source of pollutants. While NO$_{x}$ and $O_3$ were mainly emitted and formed from Jeju inland area, concentrations of SO$_2$, OC and EC were affected by Asian Dust from China. Using the mean relative standard deviation of ozone, cleanness coefficient was obtained. The cleanness coefficient value, is 1.6 times larger than the value in 1992. Recently, the air quality of Kosan has been contaminated because of the Asian Dust events since spring and the rapid industrialization development.pment.

Emission Estimation and Exposure to Hazardous Gaseous Pollutants Associated with Use of Air Fresheners Indoors (실내 방향제 사용에 의한 유해 가스상 오염물질 배출 산정 및 노출 평가)

  • Jo, Wan-Kuen;Shin, Seung-Ho;Kwon, Gi-Dong;Lee, Jong-Hyo
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.2
    • /
    • pp.137-148
    • /
    • 2009
  • This study quantitatively investigated the emissions of indoor air pollutants associated with the utilization of air fresheners indoors, and evaluated individual exposure to five specified indoor air pollutants, which were chosen on the basis of selection criteria. An electrically-polished stainless steel chamber (50L) was employed to achieve this purpose. Test air fresheners were selected through three steps: first, on the basis of market sales; second, on the basis on a preliminary head-space study; and lastly, on the basis of emissions of toxic compounds (benzene, ethyl benzene, limonene, toluene, and xylene). The empirical mathematical model fitted well with the time-series concentrations in the environmental chamber (in most cases, determination coefficient, $R^2{\gtrsim}$0.9), thereby suggesting that the empirical model was suitable for testing emissions. The concentration equilibrium appeared 180 min after the introduction of sample air fresheners into the chamber. Both the chamber concentrations of emission rates or factors varied greatly according to air freshener type. It is noteworthy that although benzene, ethyl benzene, toluene, and xylene were emitted from all test air fresheners, their exposure levels were not significant enough to result in any significant health risk. However, certain type of air fresheners were observed to emit significant amount of limonene, which is potentially reactive with ozone to generate secondary pollutants with oxidants such as ozone, hydroxyl radicals, and nitrogen oxides. The exposure levels to limonene associated with the utilization of three air fresheners were estimated to be 13 to 175 times higher than that of other air fresheners. This information can help consumers to select low-pollutant-emitting air fresheners.

Wall Contamination of Teflon Bags Used as a Photochemical Reaction Chamber of Ambient Air (실제 대기의 광화학 반응 챔버로 사용되는 테플론 백의 오염도 평가)

  • Lee, Seung-Bok;Bae, Gwi-Nam;Lee, Young-Mee;Moon, Kil-Choo
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.149-161
    • /
    • 2013
  • Experiments on photochemical reactions of purified air alone in an indoor smog chamber were carried out after flushing Teflon bags with purified air for many hours in order to check the level of contamination on the chamber wall. Ozone concentrations were linearly increased from <4 ppb up to about 8 ppb with irradiation time for four hours. Outgassing of NOx from the chamber wall was found to be less than 1 ppb. New ultrafine particles were formed and grown up to about 70 nm during the photochemical reactions, and then total number and mass concentrations of particles were increased from <10 particles/$cm^3$ up to about 4,000 particles/$cm^3$ and $1.3{\mu}g/m^3$, respectively. The wall conditions of these Teflon bags flushed with purified air might not severly affect the chamber experimental results for photochemical reactions of polluted urban ambient air. The difference of gaseous species between two chambers was 2.4 ppb of ozone at most, indicating that the wall cleaning performance of two chambers was nearly similar.

Control Indian meal moth Plodia interpunctella by gas treatment

  • Han, Gyung Deok;Kwon, Hyeok;Jin, Hyun Jung;Kum, Ho Jung;Kim, Bo Hwan;Kim, Wook
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.45-45
    • /
    • 2017
  • The Indian meal moth, Plodia interpunctella, is one of the most important pests of stored food in the food processing industry worldwide. To control the Indian meal moth, methyl bromide, phosphine, high carbon dioxide, sulfuryl fluoride and plant essential oil fumigation have been considered. However, these treatments have disadvantages. For example, depleting the ozone layer, showing resistance in insect, low control efficacy or need high cost for treatment. Chlorine dioxide ($ClO_2$) is strong disinfectant and insecticide. The gas caused a malfunction in enzymes. The oxidative stress induced by $ClO_2$ gas treatment damaged to a physiological system and all life stages of P. interpunctella. The gaseous $ClO_2$ is a convincing alternative to methyl bromide for controlling P. interpunctella. The gaseous $ClO_2$ was generated by a chlorine dioxide generator (PurgoFarm Co., Ltd., Hwasung, Korea). It generated highly pure $ClO_2$ gas and the gas blown out through a vent into a test chamber. Gas entry to the chamber was automatically controlled and monitored by a PortaSene II gas leak detector (Analytical Technology, Collegeville, PA, USA). The properly prepared eggs, larvae, pupae, and adults of P. interpunctella were used in this experiment. Data were analyzed using SAS 9.4. Percentage data were statistically analyzed after arcsine-root transformation. Analysis of variance was performed using general linear model, and means were separated by the least significant difference test at P < 0.05. Fumigation is an effective management technique for controlling all stages of P. interpunctella. We found that $ClO_2$ gas treatment directly effects on egg, larvae, pupae and adults of P. interpunctella. The gas treatment with proper concentration for over a day achieved 100 % mortality in all stages of P. interpunctella and short time treatment or low concentration gas treatment results showed that the egg hatchability, pupation rate, and adult emergency rate were lowered compare with untreated control. Also, abnormal pupae or adult rate were increased. Gaseous $ClO_2$ treatment induced insecticidal reactive oxygen species (ROS), and it resulted in fatal oxidative stress in P. interpunctella. Taken together, these results showed that exposure proper concentration and time of the gas control all stages of P. interpunctella by inducing fatal oxidative stress. Further studies will be required to apply the gas treatment under real-world condition and to understanding physiological reaction in P. interpunctella caused by oxidative stress.

  • PDF

Discharge and Fire Extinguishing Test of Inert Gas Clean Agent (불활성 가스계 청정 소화약제의 방출 및 소화)

  • Song Eun-Seok;Kim Jae-Duck;Park Yang-Won
    • Fire Science and Engineering
    • /
    • v.19 no.2 s.58
    • /
    • pp.29-36
    • /
    • 2005
  • We carried out discharge and fire extinguishing tests of new inert gas clean agent, which consists of $92\%$ nitrogen and $8\%$ carbon dioxide, as an alternative of Halon that is banned by Montreal Protocol to protect the ozone layer of the earth. Discharge and fire extinguishing tests were performed in $27m^3$ and $190m^3$ rooms with piping which allows gaseous agent to transport from storage to test rooms. We confirmed that it took less than regulation time, 60 seconds for the discharge of over $95\%$ initial charged amounts. Discharge test variables were piping length and orifice size. Fire extinguishing tests verified that this new inert gas clean agent is suitable for both n-Heptane fire and deep seated fire of wood crib.

Efficient Simulation Method for Dielectric Barrier Discharge Load

  • Oleg, Kudryavtsev;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.188-196
    • /
    • 2004
  • The dielectric barrier discharge is recognized as one of the efficient methods of ultraviolet light generation and ozone production. As well, it is widely utilized for gaseous wastes neutralization and other technological processes in industry. This electrochemical reaction is electrically equivalent to a nonlinear capacitive load that represents some difficulties for designing the power supply. Therefore, a conventional power supply is designed for a drastically simplified model of the load and generally is not optimal. This paper presents a fast simulation approach for the nonlinear capacitive model representation of the dielectric barrier discharge load lamp. The main idea of the proposed method is to use analytical solutions of the differential state equations for the load and find the unknown initial conditions for the steady state by an optimization method. The derived expressions for the analytical solutions are rather complicated, however they greatly reduce the calculation time, which make sense when a deeper analysis is performed. This paper introduces the proposed simulation method and gives some examples of its application such as estimation of the load equivalent parameters and load matching conditions.

Variability of the PM10 Concentration in the Urban Atmosphere of Sabah and Its Responses to Diurnal and Weekly Changes of CO, NO2, SO2 and Ozone

  • Wui, Jackson CHANG Hian;Pien, CHEE Fuei;Kai, Steven KONG Soon;SENTIAN, Justin
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.109-126
    • /
    • 2018
  • This paper presents seasonal variation of $PM_{10}$ over five urban sites in Sabah, Malaysia for the period of January through December 2012. The variability of $PM_{10}$ along with the diurnal and weekly cycles of CO, $NO_2$, $SO_2$, and $O_3$ at Kota Kinabalu site were also discussed to investigate the possible sources for increased $PM_{10}$ concentration at the site. This work is crucial to understand the behaviour and possible sources of $PM_{10}$ in the urban atmosphere of Sabah region. In Malaysia, many air pollution studies in the past focused in west Peninsular, but very few local studies were dedicated for Sabah region. This work aims to fill the gap by presenting the descriptive statistics on the variability of $PM_{10}$ concentration in the urban atmosphere of Sabah. To further examine its diurnal and weekly cycle pattern, its responses towards the variations of CO, $NO_2$, $SO_2$, and ozone were also investigated. The highest mean value of $PM_{10}$ for the whole study period is seen from Tawau ($35.7{\pm}17.8{\mu}g\;m^{-3}$), while the lowest is from Keningau ($31.9{\pm}18.6{\mu}g\;m^{-3}$). The concentrations of $PM_{10}$ in all cities exhibited seasonal variations with the peak values occurred during the south-west monsoons. The $PM_{10}$ data consistently exhibited strong correlations with traffic related gaseous pollutants ($NO_2$, and CO), except for $SO_2$ and $O_3$. The analysis of diurnal cycles of $PM_{10}$ levels indicated that two peaks were associated during the morning and evening rush hours. The bimodal distribution of $PM_{10}$, CO, and $NO_2$ in the front and at the back of ozone peak is a representation of urban air pollution pattern. In the weekly cycle, higher $PM_{10}$, CO, and $NO_2$ concentrations were observed during the weekday when compared to weekend. The characteristics of $NO_2$ concentration rationed to CO and $SO_2$ suggests that mobile sources is the dominant factor for the air pollution in Kota Kinabalu; particularly during weekdays.

Measurement of Mutual Solubility of High-pressure Gaseous Fire Extinguishing Agents(HFCs) and Nitrogen (고압가스계 소화약제(HFCs계열)와 질소의 상호용해도 측정)

  • 임종성;박지영;이병권;김재덕;이윤용
    • Fire Science and Engineering
    • /
    • v.16 no.3
    • /
    • pp.26-31
    • /
    • 2002
  • Bromotrifluoromethane(halon-1301) and bromochlorodifluoromethane(halon-1211) have been widely used as a clean fire extinguishing agents due to their outstanding properties. However, production and use of halon are currently being phased out under an international agreements Montreal Protocol because of global environmental concerns and HFCs have been considered as promising alter-natives for the replacement of halon since their ozone depletion potentials are low. The vapor-liquid equilibrium data are required as important basic information in evaluating the solubility of clean fire extinguishing agents and determining their optimal compositions. In this work, we chose HFCs such as HFC-22 HFC-125, and HFC-l34a for gaseous fire extinguishing agents and nitrogen as a pressurization gas for a proper jet velocity of these agents. Phase equilibria for binary mixtures of nitrogen/HFC-22, nitrogen/HFC-125, and nitrogen/HFC-l34a were measured in the temperature range from 283.15K to 303.15K. For equilibrium measurement, we used a circulation type apparatus in which both vapor and liquid phases were continuously recirculated. The experimental data were relatively well correlated with the Peng-Robinson equation of state with Wong-Sandier mixing rules.

Development of Photo-Fenton Method for Gaseous Peroxides Determination and Field Observations in Gwangju, South Korea

  • Chang, Won-Il;Shim, Jae-Bum;Hong, Sang-Bum;Lee, Jai H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.E1
    • /
    • pp.16-28
    • /
    • 2007
  • An improved method was developed to determine gas-phase hydrogen peroxide($H_2O_2$) and organic hydro-peroxides (ROOH) in real-time, The analytical system for $H_2O_2$ is based on formation of hydroxybenzoic acid (OHBA), a strong fluorescent compound. OHBA is formed by a sequence of reactions, photoreduction of Fe(III)-EDTA to Fe(II)-EDTA, the Fenton reaction of Fe(II)-EDTA with $H_2O_2$, and hydroxylation of benzoic acid. By use of this analytical method rather than a previous similar method, Fenton reaction time was reduced from 2 min. to 30s. Air samples were collected by a surfaceless inlet to prevent inlet line losses. With a special arrangement of the sampling apparatus, sample delivery time was drastically reduced from ${\sim}5\;min\;to\;{\sim}20\;s$. The automated system was found to be sensitive, capable of continuous monitoring, and affordable to operate. A comparison of this method with a well-established one showed an excellent linear correlation, validating applicability of this technique to $H_2O_2$ determination. The system was applied to field measurements conducted during summertime of 2004 in Gwangju, South Korea. $H_2O_2$ was found to be a predominant species of peroxides. The diurnal variation of $H_2O_2$ displayed the maximum in early afternoon and the broad minimum throughout night. $H_2O_2$ was correlated positively with ozone, photochemical age, and temperature, however, negatively with $NO_x$ and relative humidity.

PM2.5 Simulations for the Seoul Metropolitan Area: ( I ) Contributions of Precursor Emissions in the 2013 CAPSS Emissions Inventory (수도권 초미세먼지 농도모사: ( I ) 2013 CAPSS 배출량 목록의 전구물질별 기여도 추정)

  • Kim, Soontae;Bae, Changhan;Kim, Byeong-Uk;Kim, Hyun Cheol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.139-158
    • /
    • 2017
  • CMAQ (Community Multiscale Air Quality Model) simulations were carried out to estimate the potential range of contributions on surface $PM_{2.5}$ concentrations over the Seoul Metropolitan Area (SMA) with the gaseous precursors and Primary Particulate Matters(PPM) available from a recent national emissions inventory. In detail, on top of a base simulation utilizing the 2013 Clean Air Policy Supporting System (CAPSS) emission inventory, a set of Brute Force Method (BFM) simulations after reducing anthropogenic $NO_x$, $SO_2$, $NH_3$, VOCs, and PPM emissions released from area, mobile, and point sources in SMA by 50% were performed in turn. Modeling results show that zero-out contributions(ZOC) of $NH_3$ and PPM emissions from SMA are as high as $4{\sim}5{\mu}g/m^3$ over the region during the modeling period. On the contrary, ZOC of local $NO_x$ and $SO_2$ emissions to SMA $PM_{2.5}$ are less than $1{\mu}g/m^3$. Moreover, model analyses indicate that a wintertime $NO_x$ reduction at least up to 50% increases SMA $PM_{2.5}$ concentrations, probably due to increased HNO3 formation and conversion to aerosols under more abundant ozone and radical conditions after the $NO_x$ reduction. However, a nation-wide $NO_x$ reduction decreased SMA $PM_{2.5}$ concentrations even during winter, which implies that nation-wide reductions would be more effective to curtail SMA $PM_{2.5}$ concentrations than localized efforts.