• Title/Summary/Keyword: Gas-phase synthesis

Search Result 142, Processing Time 0.021 seconds

Synthesis of ${\beta}-FeSi_2$ Powder by Mechanical Alloying Process (기계적 합금화법에 의한 ${\beta}-FeSi_2$ 분말 함성)

  • 이충효;조재문;김환태;권영순
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.104-109
    • /
    • 2001
  • The semiconducting ${\beta}-FeSi_2$ compound has been recognized as a thermoelectric material with excel-lent oxidation resistance and stable characteristics at elevated temperature. In the present work, we applied mechanical alloying(MA) technique to produce ${\beta}-FeSi_2$ compound using a mixture of elemental iron and silicon powders. The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The MA powders were characterized by the X-ray diffraction with Cu-K $\alpha$ radiation, thermal analysis and scanning electron microscopy. The single ${\beta}-FeSi_2$ phase has been obtained by mechanical alloying of $Fe_{33}Si_{67}$ mixture powders for 120 hrs or for 70 hrs coupled with the subsequent heat treatment up to $700^{\circ}C$. The grain size of ${\beta}-FeSi_2$ powders analyzed by Hall plot method was 44nm.

  • PDF

Detection of Nitroaromatic Compounds Based on Silicon Nanoparticles (실리콘 나노 입자를 이용한 니트로방향족 화합물의 탐지)

  • Song, Jinwoo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.37-40
    • /
    • 2009
  • Synthesis and characterization of alkyl-capped nanocrystalline silicon (R-n-Si) have been achieved from the reaction of silicontetrachloride with magnesiumsilicide. Surface of silicon nanocrystal has been derivatized with various alkyl groups (R=methyl, n-butyl, etc.). Silicon nanoparticles have been also obtained by the sonication of luminescent porous silicon. Former exhibits an emission band at 360 nm, but latter exhibits an emission band at 680 nm. In this study very sensitive detection of TNT (2,4,6-trinitrotoluene), DNT (2,4-dinitrotoluene), NB (nitrobenzene), and PA (picric acid) has been achieved in gas phase with porous silicon using photoluminescence quenching of the silicon crystallites as a transduction mode. Porous silicon are electrochemically etched from crystalline silicon wafers in an aqueous solution of hydrofluoric acid. We have characterized these silicon nanoparticles by Luminescence Spectrometer (LS 55).

  • PDF

Structural and Optical Properties of GaN Powders Synthesized from GaOOH (GaOOH로부터 합성된 GaN 분말의 구조적, 광학적 특성)

  • Jo, Seong-Ryong;Lee, Jong-Won;Park, In-Yong;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.476-481
    • /
    • 2002
  • In this work, we report on the synthesis of the GaN powders from gallium oxide hydroxide (GaOOH) powders and on the structural and optical properties of them. Simple heat treatment of GaOOH in the flow of $NH_3$ gas leads to the formation of submicron hexagonal GaN powders even at the low reaction temperature of $800^{\circ}C$. XRD measurements show that the powders obtained are the single phase GaN. EDS, FTIR, and PL measurements indicate the oxygen-associated characteristics. It is shown from the low temperature PL measurement on GaN powders synthesized at $1000^{\circ}C$ that the shallow donor-acceptor recombination induced emission is more intense than the near band-edge excitonic emission.

Synthesis and Characterization of $TiO_2$ Ultrafine Powder by Chemical Vapor Deposition (화학 증착법에 의한 $TiO_2$ 초미분의 제조 및 입자 특성에 관한 연구)

  • 염선민;이성호;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 1995
  • TiO2 fine powders were synthesized using oxygenolysis and hydrolysis reaction of TiCl4 vapor in gas phase. The TiO2 powder synthesized showed morphological differences depending on reaction system as follows: TiCl4-O2 reaction system produced the monosized particles having polyhedral shape with well-defined crystal planes and the particles did not agglomerate into secondary particles. TiCl4-H2O reaction system, whereas, produced the spherical secondary particles which consisted of fine primary particles. Other powder characteristics such as particle size, impurity content and rutile content are also reported in this study.

  • PDF

Synthesis of Ultrafine Calcium Carbonate powders by nozzle Spouting Method (분사법에 의한 초미립 경질 탄산 칼슘 분말의 합성)

  • Ahn, Ji-Whan;Park, Charn-Hoon;Kim, Jeong-Heo;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1276-1284
    • /
    • 1996
  • Ultrafine calcim carbonate powders with the size of 0.05~0.1 ${\mu}{\textrm}{m}$ and the calcite phase were prepared by the nozzle spouting method which was conducted by spouting calcium hydroxide slurry in reactor filled with CO2 gas. Well dispersed ultra-fine particles were synthesized in condition of high Ca(OH)2 concentration of the slurry ( 0.5wt%) synthesized calcium carbonate powder was shown the large particle size with agglo-meration.

  • PDF

Mixing Effect by the Geometry of Static Mixer with Turbulent In-Situ Mixing Process (난류 용탕 In-Situ 합성법을 위한 스태틱 믹서의 형상에 따른 혼합 효과)

  • Lee, Dae-Sung;Kim, Hyo-Geun;Ha, Man-Yeong;Park, Yong-Ho;Park, Ik-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1307-1312
    • /
    • 2005
  • Turbulent in-situ mixing process is a new material process technology to get dispersed phase in nanometer size by controlling reaction of liquid/liquid, liquid/solid and liquid/gas, flow and solidification speed simultaneously. In this study mixing, the key technology to this synthesis method will be studied by computational fluid dynamics. For the simulation of mixing of liquid metal, static mixers will be investigated. Two inlets for different liquid metal meet and merge like 'Y' shape tube. The tube has various shapes such as straight and curved. Also, the radius of curve will be varied. The performance of mixer will be evaluated with quantitative analysis with coefficient of variance of mass fraction. Also, detailed plots of intersection will be presented to understand effect of mixer shape on mixing.

Synthesis of titania nanopowder and its photocatalytic properties

  • Jang, Hee-Dong;Lee, Jae-Chun;Kil, Dae-Sup
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.569-572
    • /
    • 2003
  • Titanium dioxide ($TiO_2$) nanoparticles were prepared by the oxidation of titanium tetrachloride ($TiCl_4$) in a diffusion flame reactor. The average diameter of particles was 15 to 30 nm and mass fraction of anatase ranged from $40\;to\;80\%$. Effects of particle size and phase composition of those $TiO_2$ nanoparticles on photocatalytic properties such as decomposition of methylene blue and bacteria gas were investigated. The degree of decomposition of methylene blue by the $TiO_2$ nanoparticles under the illumination of the black light was directly proportional to the anantase mass fraction, but inversely to the particle size. The decomposition of bacteria by the $TiO_2$ nanoparticles under the illumination of the fluorescent light showed the same trend as in the case of the methylene blue.

  • PDF

Synthesis of amorphous calcium carbonate by gas-liquid reaction and its crystallization

  • Ahn Ji-Whan;Kim Hyung-Seok;Park Jin-Koo;Kim Ka-Yeon;Yim Going;Joo Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.654-657
    • /
    • 2003
  • We obtained amorphous calcium carbonate through the carbonation reaction of $Ca(OH)_2$, and through this reaction, observed changes in particle shape and phase by electric conductivity, XRD and TEM analysis. According to the result of the analysis, in the first declining stage of electric conductivity, amorphous calcium carbonate that has formed is coated on the surface of $Ca(OH)_2$ and obstructs its dissolution, and in the first recovery stage of electric conductivity, amorphous calcium carbonate is dissolved and re-precipitated and forms chains of fine calcite particles linearly joined. In the second decline of conductivity, viscosity increases due to the growth of chains of calcite particles, and finally the calcite particles are dissolved and separated into colloidal crystalline calcite, thereby increasing electric conductivity again.

  • PDF

A Study on the Synthesis of Fine Zirconium Nitride Powder from Zirconium Chloride(IV) (염화지르코늄(IV)으로부터 질화지르코늄 미분체의 합성에 관한 연구)

  • 김영우;장윤식;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.184-190
    • /
    • 1988
  • ZrN powder was prepared from the powder mixture of ZrCl4 and Al by the halogenide process in nitrogen gas flow (100-150ml/min) at the temperatures from 200$^{\circ}$to 1050$^{\circ}C$. ZrN powder was formed about 600$^{\circ}C$ and in the slow nitriding reaction, however, an intermediate product of Al3Zr was formed. The fine powder (0.1-10$\mu\textrm{m}$) of single phase ZrN was obtained at 1050$^{\circ}C$ after 1 hour. The lattice parameter and crystallite size of ZrN were 4.5787A and 360A, respectively. According to SEM observation, the particles were apt to agglomerates. The apparent activation energy for the formation of ZrN was approximately 13.2kcal/mole(750$^{\circ}$-1000$^{\circ}C$).

  • PDF

Dry Synthesis of Nearly Monodisperse Spherical Silica (단분산에 가까운 구형 실리카의 건식 제조)

  • Park, Hoey Kyung;Park, Kyun Young
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.677-679
    • /
    • 2007
  • Nearly monodisperse spherical silica particles, 200~300 nm in diameter, were produced via a dry route for the first time through a two-stage hydrolysis of $SiCl_4$ vapor. In the first stage, the $SiCl_4$ was partially hydrolyzed in a batch reactor at $150^{\circ}C$ to form nearly monodisperse silicon oxychloride particles. In the second stage, the oxychlorides were hydrolyzed further in a tubular reactor to have produced silica with the morphology and size nearly conserved.