• Title/Summary/Keyword: Gas-phase Combustion

Search Result 231, Processing Time 0.024 seconds

Phase-Resolved CARS Temperature Measurement in a Lean Premixed Gas Turbine Combustor (I) -Effect of Equivalence Ratio on Phase-Resolved Gas Temperature- (CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정 (I) -연료/공기 혼합정도가 위상별 온도에 미치는 영향-)

  • Lee Jong Ho;Jeon Chung Hwan;Park Chul Woong;Hahn Jae Won;Chang Young June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1184-1192
    • /
    • 2004
  • Experimental investigations were carried out in an atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on methane gas. The objective of this study was to obtain the phase-resolved gas temperatures at different phases of the oscillating pressure cycle during unstable combustion. CARS temperature measurements were made at several spatial locations under lean premixed conditions to get the information on temperature field within the combustor. Also the effect of incomplete fuel-air mixing on phase-resolved temperature fluctuation was investigated. Results including phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs) were provided in this paper. Temperature PDFs gave an insight on the flame behavior. And strong correlation between phase-resolved temperature profile and pressure cycle was observed. Results of the phase-resolved high temperature gave an additional information on the perturbation of equivalence ratio at flame as well as the effect of mixing quality on NOx emission characteristics.

Numerical Analysis for Spray Combustion Considering Droplet Heating (액적 가열을 고려한 분무 연소의 수치 해석)

  • Sung Hyunggun;Jeong Daekwon;Lee Sangmyeong;Roh Taeseong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.208-211
    • /
    • 2005
  • In order to provide a useful data of combustion chamber design, a numerical analysis for spray combustion of fuel and oxidizer in combustion chamber has been conducted. As a spray model, the DSF model and the Euler-Lagrange scheme have been used. The change of droplet temperature has been calculated considering droplet heating. The coupling effects between and the gas phase the droplets, and between the gas phase and the evaporated vapor have been calculated using the PSIC model.

  • PDF

A Numerical Study on Interaction and Combustion of Droplets Injected into a Combustor (연소실에 분사된 액적 간의 상호작용과 연소현상에 대한 수치적 연구)

  • Kook, J.J.;Park, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.17-26
    • /
    • 1999
  • Vaporization, ignition and combustion of fuel droplets in tandem array are theoretically investigated to understand the droplet interactions in combustors. Including the effects of density variation in gas-phase, internal circulation and transient liquid heating, a numerical studies are performed by changing parameters such as initial droplet temperatures, initial droplet spacings, initial Reynolds numbers, surrounding gas temperatures, and activation energies of fuel vapors. Combustion regime maps classify the droplet combustion phenomena according to the configuration and location of the flame with respect to injection Reynolds numbers and surrounding gas temperatures. In addition, it is shown that the dynamic histories of droplets and ignition delay times are dependent on droplet size ratios and initial spacings of tandem droplets.

  • PDF

Effects of Fuel-Air Unmixedness on Lean Premixed Combustion Characteristics (연료-공기 비혼합도가 희박예혼합 연소 특성에 미치는 영향)

  • Kim, Dae-Hyun;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.133-139
    • /
    • 2002
  • The lean premixed technique has been proven very efficient in reducing NOx emissions from gas turbine combustors. However combustion instability is susceptible to occur in lean premixed combustor. So laboratory-scale dump combustor was used to understanding the underlying mechanisms causing combustion instabilities. In this study, tests were conducted at atmospheric pressure and inlet air was up to $360^{\circ}C$ with natural gas. The observed instability was a longitudinal mode with a frequency of ${\sim}341.8Hz$. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various equivalence ratio. Combustion instability was observed to occur at higher value of equivalence ratio(>0.69). This study was performed to investigate the effects of equivalence ratio and fuel split measuring NOx and acoustic wave. The results reveal the effect of fuel-air unmixedness on lean premixed combustor.

  • PDF

Non-Thermal Plasma Technique for Removing $SO_2$ and $NO_x$ from Combustion Flue Gas (연소가스내 탈황탈질처리를 위한 저온 플라즈마 기술)

  • Song, Yeong-Hun;Sin, Wan-Ho;Kim, Seok-Jun;Jang, Gil-Hong
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.69-76
    • /
    • 1997
  • Industrial-scale pulse corona process to remove $SO_2$ and $NO_x$ simultaneously from combustion flue gas has been studied. The pilot plant built in the present study treats 2,000 $Nm^3$/hr of flue gas from a boiler. The geometry of the pulse corona reactor is similar to that of an electrostatic precipitator commonly used in industry, A thyratron switch and magnetic pulse compressors, which can generate up to 130 kV of peak pulse voltage and up to 30 kW of average pulse power, have been used to produce pulsed corona. The removal efficiencies of $S0_2$ and $NO_x$ with the present process are maximum of 95 % and 85 %, respectively. Electrical power consumption to produce the pulsed corona, which has been one of the major difficulties to apply this process to industry, has been evaluated in the present study. The results showed that the power consumption can be reduced significantly by simultaneous addition of hydrocarbon injection and heterogeneous phase reactions to the process.

  • PDF

Effect of Scale and Geometry on the Performance of Heat-Recirculating Swiss roll combustors for Micro Power Generation Applications (마이크로 동력발생용 소형 스위스롤 연소기의 크기와 형상 효과에 대한 연구)

  • Oh, Hwa-Young;Huh, Hwan-Il;Ronney, Paul D.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Combustion and extinction limits in heat-recirculating excess enthalpy reactors employing both gas-phase and catalytic reaction have been examined with an emphasis Reynolds number (Re) effects and possible application to microscale combustion devices. In this paper, geometrically similar reactors of different physical sizes and different numbers of turns were tested with the aim of estimating for combustor characteristics. Combustion efficiency is estimated by measuring exhausted gases through the gas chromatograph. From these results the effect of scale and number of turns are demonstrated and optimal operating conditions for Swiss roll combustors are identified.

Effect of Operating Conditions on Characteristics of Combustion in the Pulverized Coal Combustor (미분탄 연소로의 운전조건이 연소특성에 미치는 영향)

  • Kang, Ihl-Man;Kim, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.139-148
    • /
    • 1999
  • In oder to analyze the effect of operating conditions on pulverized coal combustion, a numerical study is conducted at the pulverized coal combustor. Eulerian approach is used for the gas phase, whereas Lagrangian approach is used for the particle phase. Turbulence is modeled using standard ${\kappa}-{\varepsilon}$ model. The description of species transport and combustion chemistry is based on the mixture fraction/probability density function(PDF) approach. Radiation is modeled using P-l model. The turbulent dispersion of particles is modeled using discrete random walk model. Swirl number of secondary air affects the flame front, particle residence time and carbon conversion. Primary/Secondary air mass ratio also affects the flame front but little affects the carbon conversion and particle residence time. Air-fuel ratio only affects the flame front due to lack of oxygen. Radiation strongly affects the flame front and gas temperature distribution because pulverized coal flame of high temperature is considered.

  • PDF

Analysis of New DI Diesel Combustion Chamber System using New Spray Wall Impaction Model (새로운 충돌모델을 이용한 신형식 디젤연소실 분석)

  • Chang W. S.;Kim D. J.;Park K.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.54-65
    • /
    • 1997
  • Wall wetting in diesel engines has been considered as a bad phenomenon because of fuel deposition which makes fuel/air mixing and evaporation worse. In order to avoid the problem, many research works have been carried out. One of the studies is on new combustion chamber systems which are using spray impacting on a wall. In this study a new type of chamber system is analysed using wall impaction model introduced and assessed in the coupled paper. The gas phase is modelled in terms of the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction, The liquid phase is modelled following the discrete droplet model approach in Lagrangian form. With various conditions the spray distribution, vapor contour and gas flows are analyzed, and then design factors of those combustion systems are recommended.

  • PDF

Study on Spray Vaporization and Combustion in High Pressure Environment (고압에서의 분무의 증발 및 연소 현상에 관한 연구)

  • Wang, Tae-Joong;Baek, Seung-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.193-207
    • /
    • 2002
  • The present study is mainly motivated to investigate the vaporization, autoignition, and combustion of liquid fuel spray injected into high pressure environment. In order to represent these phenomena realistically, discrete droplet model (DDM) which simulates the spray using finite number of representative droplets was adopted for detailed consideration of the finite rate of uansport between liquid and gas phases. The Eulerian-Lagrangian formulation was used to analyze the two-phase interactions. The high pressure vaporization model was applied using the thermodynamic and phase equilibrium at droplet surface. The high pressure effect as well as high temperature effect was considered in the calculation of liquid and gas properties. The characteristics of spray in high pressure environment were explained by comparison with normal pressure case.

  • PDF

Effect of Flow Distribution on the Combustion Efficiency In an Entrained-Bed Coal Reactor (분류층 석탄반응로에서 유동분포가 연소성능에 미치는 영향)

  • CHO, Han Chang;SHIN, Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1022-1030
    • /
    • 1999
  • A numerical study was carried out to analyze the effect of flow distribution of stirred part and plug flow part on combustion efficiency at the coal gasification process in an entrained bed coal reactor. The model of computation was based on gas phase eulerian balance equations of mass and momentum. The solid phase was described by lagrangian equations of motion. The $k-{\varepsilon}$ model was used to calculate the turbulence flow and eddy dissipation model was used to describe the gas phase reaction rate. The radiation was solved using a Monte-Carlo method. One-step parallel two reaction model was employed for the devolatilization process of a high volatile bituminous Kideco coal. The computations agreed well with the experiments, but the flame front was closer to the burner than the measured one. The flow distribution of a stirred part and a plug flow part in a reactor was a function of the magnitude of recirculation zone resulted from the swirl. The combustion efficiency was enhanced with decreasing stirred part and the maximum value was found around S=1.2, having the minimum stirred part. The combustion efficiency resulted from not only the flow distribution but also the particle residence time through the hot reaction zone of the stirred part, in particular for the weak swirl without IRZ(internal recirculation zone) and the long lifted flame.