• Title/Summary/Keyword: Gas-liquid injector

Search Result 157, Processing Time 0.02 seconds

Results of Cold Flow Test and Design of Injectors for Oxidizer-rich Preburner (산화제 과잉 예연소기용 분사기 설계 및 수류 시험 결과)

  • So, YoonSeok;Woo, SeongPil;Lee, Kwang-Jin;Yu, ByungIl;Kim, Jinhyung;Cho, Hwangrae;Bang, Jeongsuk;Han, YeongMin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.52-57
    • /
    • 2018
  • This paper presents the design and cold flow test results of oxidizer-rich preburner injectors for a 9 tonf-class staged combustion engine cycle. Three types of coaxial swirl injectors were designed, and 12 injectors were designed for each type. The diameters of the fuel tangential holes are identical. The diameters of the oxidizer tangential holes were varied to investigate the influence of combustion in the oxidizer-rich preburner according to the momentum ratio of the gas oxidizer generated from combustion in the injector chamber and liquid oxidizer through the cooling channel. It will be verified through a powerpack and combustion test using an oxidizer-rich preburner. In the cold flow test, the fuel flow rate and oxidizer tangential hole flow rate reached the target value based on the designed differential pressure.

Performance Evaluation of 1 N Class HAN/Methanol Propellant Thruster (HAN/메탄올 추진제를 사용하는 1 N급 추력기 성능 평가)

  • Lee, Jeongsub;Huh, Jeongmoo;Cho, Sungjune;Kim, Suhyun;Park, Sungjun;Kim, Sukyum;Kwon, Sejin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.299-304
    • /
    • 2013
  • The HAN which is an ionic liquid is a non-toxic monopropellant with high storability, and its specific impulse can be increased by blending methanol, thereby it can substitute the hydrazine. The HAN was synthesized by acid-base reaction of hydroxylamine and nitric acid, and the blending ratio of HAN and methanol is 8.2:1. The iridium catalyst was used to decompose the HAN, and 1 N class thruster with shower head type injector having one orifice was used to evaluate the HAN/Methanol propellant. The thermal stability of distributor was increased by using ceramic material to endure the high temperature of product gas. The preheating temperature of catalyst should be $400^{\circ}C$ at least for the complete decomposition. The feeding pressure should be increased to increase the $C^*$ efficiency, thereby the decomposition performance was decreased upstream catalyst, and the performance of thruster was decreased. The fine metal mesh was inserted after the injector to improve the atomization of propellant, thereby it can settle the performance decrease problem. The phenomenon of performance decrease was remarkably improved owing to the insertion of fine metal mesh.

Comparison between GOx/Kerosene and GN2O/Ethanol Reactive Spray in a Subscale Liquid Rocket Engine (축소형 액체로켓엔진에서 기체산소/케로신 및 기체아산화질소/에탄올 연소 분무의 비교)

  • Choi, Songyi;Shin, Bongchul;Lee, Keonwoong;Kim, Dohun;Koo, Jaye;Park, Dong-Kun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.61-68
    • /
    • 2015
  • Reactive sprays of two propellant combinations(GOx/kerosene and $GN_2O$/ethanol) were observed and compared with each other as a basic research of visualizing supercritical combustion. A shadowgraph imaging method was used to visualize the reactive sprays, and shadowgraph images were converted to density gradient magnitude images to analyse the structure of reactive sprays. The gas-liquid interface of GOx/kerosene spray showed rougher boundary and steeper density gradient near the injector face than the $N_2O$/ethanol at similar combustion chamber pressure. Spray core length was calculated from averaged density gradient magnitude images and it was revealed that spray core length of GOx/kerosene was shorter than that of $GN_2O$/ethanol, although momentum flux ratio of GOx/kerosene propellant combination was lower.

Numerical Study of the Post Combustion Chamber of Grate Type Incinerator in Daejon 4th Industrial Complex (대전 4공단 소각로 후연소로 모델 연구)

  • Kim Hey-Suk;Shin Mi-Soo;Jang Dong-Soon;Park Byung-Soo;Um Tae-In
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.133-138
    • /
    • 2002
  • A 3-D axisymmetric computer program is developed to predict the NO behavior in SNCR system for the stoker incinerator with the waste treatment capacity, 200ton/day. To this end a turbulent reacting flow field calculation is made using proper assumption and empiricism. The stoker bed is assumed to be a homogeneous waste-volatilized gaseous state. The initial composition or reactants are assumed based on the data of the ultimate analysis. Turbulent is resolved by k-e model and turbulent reaction is handled by eddy-breakup model harmonized with empirical chemistry data for gaseous combustion, NO and urea reaction. The liquid droplet is traced by Lagrangian method incorporated by aerodynamic drag, Coriolis and crntrifugal forces. Radiation is treated by sensible heat loss model. Calculation results are in good agreement with experimental data at the outlet of post combustion chamber in Daejon 4th industrial complex. The flue gas shows the temperature range of $900\sim1000^{\circ}C$, velocity of 5m/s and NO concentration of 140ppm at the exit while the measured temperature, flue gas velocity and NO concentration are $967^{\circ}C$, $3\sim4m/s$ and $100\sim200ppm$respectively. Using the developed computer program a parametric study has been made with the variation of heat content of waste, castable length and SNCR variables for the determination of proper injector location. In general, the calculated results are consistent and physically acceptable.

  • PDF

A study on Behavior of Turbulent Transient Jets with Butane and Propane (Butane 및 propane의 비정상 난류 제트 특성에 관한 연구)

  • Lee, Beom-Ho;Song, Hak-Hyun;Cho, Seung-Hwan;Hong, Sung-Tae;Lee, Dae-Yup;Lee, Tae-Woo
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.74-82
    • /
    • 2010
  • In order to understand the behavior of transient gaseous injection used in an LPG (Liquefied Petroleum Gas) engine, turbulent incompressible transient jets with butane and propane were measured and analyzed at pressures of 1.5 bar and 2.0 bar with injector diameters of 3 mm and 5 mm. Mie-scattering method with a tracer was used, and images were processed to investigate the behavior of butane and propane jets. Distances from the nozzle to transition region were measured as $L_e/d_{inj}$=4.35~19.4, where $L_e$ and $d_{inj}$ indicate respectively a distance from nozzle to transition point and nozzle diameter. Slits and tubes around jet at near-field were introduced to measure the effect of entrainment and the diameter of jet, which revealed that the entrainment of surrounding air is significant for developing jet diameter. When the entrainment is restricted, the behavior of jet became deviating from the baseline. It was found that the virtual origin located outside of a nozzle towards jet tip within the conditions of this work, and its location was estimated as $x_o/d_{inj}$=0.56~7.25, where $x_o$ is a distance from nozzle to virtual origin.

Analysis of Spray Combustion for the Performance Prediction of Liquid Rocket Combustor (3차원 분무연소장 해석에 의한 액체추진기관 연소실 성능예측에 대한 연구)

  • 황용석;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.31-39
    • /
    • 1999
  • In this paper, numerical experiment is attempted to analyze and compare the combustion efficiency of the burning sprays due to OFO, FOF triplet / FOOF split doublet injectors. Preconditioned Wavier-Stokes equation system with low Reynolds number $\kappa$-$\varepsilon$ model for turbulence closure, is LU-SGS time-integrated. Spray processes are modeled by DSF analysis with experimentally determined injection characteristics. n-heptane/air global reaction model approximates the combustion for simplicity, and the influence of turbulence on the chemical reaction is included using eddy dissipation model. The results showed the FOF triplet injector of highest combustion efficiency, whereas the OFO type of poet performance. It was also observed that the droplet mean diameter and the average gas temperature due to the mixing efficiency, are the representative parameters for the performance design of combustion.

  • PDF

Determination of Volatile Organic Compounds emitted from Municipal Solid Waste Landfill Site by Thermal Desorption-Cryofocusing-GC/FID/FPD (열탈착-저온농축-GC/FID/FPD에 의한 도시 생활폐기물 매립장에서 방출되는 휘발성 유기화합물의 측정에 관한 연구)

  • Kim, Man-Goo;Jung, Young-Rim;Seo, Young-Min;Nam, Sung-Hyun;Kwon, Young-Jin
    • Analytical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.274-285
    • /
    • 2001
  • In this study, the thermal desorption-cryofocusing-gas chromatographic(TD-C-GC) method was developed for determination of volatile organic compounds(VOCs) in ambient air and was applied at the municipal solid waste landfill sites. On-column cryofocusing was possible only with a 100 ml dewars bottle in TD-C-GC method with a stainless steel column. However, high operating pressure was needed for purging VOCs from the absorbent trap, which was able to solve by pressure programming with a electric pressure controller. By using both pressure and temperature programming brought increasing of resolution power in on-column cryofocusing method, but the high pressure caused a leakage of sample tube with repeated use. A loop cryofocusing devise was also developed and compared with the direct on-column method. In loop cryofocusing method, VOCs were concentrated on a 0.8mm i.d. loop which is located between the injector and separation column by using liquid nitrogen. In order to purge VOCs from the absorbent trap, only 0.4 psi of pressure was need in the loop cryofocusing method. Dual detection system was applied for the analysis of VOCs; a FID was used for hydrocarbons and a FPD was used for sulfur-containing compounds. Qualitative analysis was done by on-column cryofocusing GC-MS system. Among the large number of VOCs, toluene was the most abundant. Hydrogen sulfide, dimethyl sulfide, carbon disulfide, dimethyl disulfide and methyl propyl disulfide were detected at landfill site by FPD.

  • PDF