• Title/Summary/Keyword: Gas-combined

Search Result 954, Processing Time 0.026 seconds

Comparison of Dry Reforming of Butane in Catalyst Process and Catalyst+Plasma Process over Ni/γ-Al2O3 Catalyst (뷰테인 건식 개질 반응을 위한 Ni/γ-Al2O3 촉매를 이용한 촉매 공정과 촉매+플라즈마 공정 비교)

  • Jo, Jin-Oh;Jwa, Eunjin;Mok, Young-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Conventional nickel-based catalyst processes used for dry reforming reactions have high activation temperatures and problems such as carbon deposition and metal sintering on the active sites of the catalyst surface. In this study, the characteristics of butane dry reforming reaction were investigated by using DBD plasma combined with catalytic process and compared with existing catalyst alone process. The physical and chemical properties of the catalysts were investigated using a surface area & pore size analyzer, XRD, SEM and TEM. Using $10%Ni/{\gamma}-Al_2O_3$ at $580^{\circ}C$, in the case of the catalyst+plasma process, the conversion of carbon dioxide and butane were improved by about 30% than catalyst alone process. When the catalyst+plasma process, the conversion of carbon dioxide and butane and the hydrogen production concentration are enhanced by the influence of various active species generated by the plasma. In addition, it was found that the particle size of the catalyst is decreased by the plasma in the reaction process, and the degree of dispersion of the catalyst is increased to improve the efficiency.

Study on the Low Energy Sewage Management Based on Pre-sensing Technology and Automatic Blower Control (사전감지기술 및 송풍량 자동제어를 기반으로 한 저에너지 하수관리기술에 관한 연구)

  • Lee, Seungmyoung;Kim, Hanlae;Ki, Kyoungseo
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.592-603
    • /
    • 2019
  • This study is about the implementation of low energy sewage management technology through effective control of blower which consumes the most energy in sewage treatment. In calculating the amount of oxygen required for microorganisms, unlike the existing method using the operating index in the bioreactor or TMS data in the discharge port, the CODcr and NH4+-N concentration changes in sewage flowing into the sewage treatment plant were detected in advance before entering the bioreactor and the amount of air was controlled based on this. The pre-sensing was found to have a high correlation compared with conventional products. As a result of blower control, it was possible to save about 9.9% energy more than the manual control. Consequently, this study suggested the possibility of blower's real-time control combined with pre-sensing technology. Also, it is expected that the low energy sewage treatment can be applied to sewage treatment facilities dependent on operation by manpower, and it will contribute to the reduction of greenhouse gas emissions.

Greenhouse Gas Emissions from Soils Amended with Biochar (바이오차르 토양투입에 따른 온실가스 발생 변화 연구)

  • Yoo, Gayoung;Son, Yongik;Lee, Seung Hyun;Yoo, Yena;Lee, Sang Hak
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.471-477
    • /
    • 2013
  • Biochar amendment to agricultural soil is regarded as a promising option to mitigate climate change and enhance soil quality. It could sequester more carbon within the soil system and increase plant yield by changing soil physicochemical characteristics. However, sustainable use of biochar requires comprehensive environmental assessment. In this sense, it is important to measure additional greenhouse gas emission from soils after biochar addition. We investigated emissions of $CO_2$, $N_2O$, and $CH_4$ from incubated soils collected from rice paddy and cultivated grassland after amendment of 3% biochar (wt.) produced from rice chaff. During incubation, soils were exposed to three wet-dry cycles ranging from 5~85% soil gravimetric water content (WC) to investigate the changes in effect of biochar when influenced by different water levels. The $CO_2$ emission was reduced in biochar treatment compared to the control at WC of 30~70% both in rice paddy and grassland soils. This indicates that biochar could function as a stabilizer for soil organic carbon and it can be effective in carbon sequestration. The $N_2O$ emission was also reduced from the grassland soil treated with biochar when WC was greater than 30% because the biochar treated soils had lower denitrification due to better aeration. In the rice paddy soil, biochar addition resulted in decrease in $N_2O$ emission when WC was greater than 70%, while an increase was noted when WC was between 30~70%. This increase might be related to the fact that available nutrients on biochar surface stimulated existing nitrifying bacterial community, resulting in higher $N_2O$ emission. Overall results imply that biochar amendment to agricultural soil can stabilize soil carbon from fast decomposition although attention should be paid to additional $N_2O$ emission when biochar addition is combined with the application of nitrogen fertilizer.

Analysis of Heating and Cooling Energy Consumption in Rental and Sales Apartments in Busan (부산시 임대아파트 및 분양아파트의 냉난방에너지 소비량 분석)

  • Lee, Kyung-Hee;Lee, Jun-Gi
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.79-85
    • /
    • 2021
  • This study analyzed the energy consumption differences between rental and owner owned (purchased) apartments in Busan, South Korea during the cooling and heating seasons. Analysis revealed that the average electricity consumed for cooling was 2.5 kWh/m2·yr for rental apartments and 2.3 kWh/m2·yr for purchased apartments, a difference of 0.2 kWh/m2·yr. The average electrical heating energy consumption was 3.3 kWh/m2·yr for rental apartments and 2.2 kWh/m2·yr for purchased apartments, a difference of 1.1 kWh/m2·yr. It was estimated that the use of electric blankets and heaters was higher in rental apartments than purchased apartments resulting in higher electrical heating energy consumption. The average gas heating energy consumption was 7.0 kWh/m2·month for rental apartments and 6.8 kWh/m2·month for purchased apartments. When electricity and gas usage was combined for heating, the average total heating energy consumption was 10.3 kWh/m2·month for rental apartments and 9.0 kWh/m2·month for purchased apartments. This indicates that rental apartments consume 1.3 kWh/m2·month more energy than purchased apartments during heating season. Overall, rental apartments consume more energy than purchased apartments during both the cooling and heating seasons.

A Study on the GHG Reduction Newest Technology and Reduction Effect in Power Generation·Energy Sector (발전 에너지 업종의 온실가스 감축 신기술 조사 및 감축효과 분석)

  • Kim, Joo-Cheong;Shim, So-Jung
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.349-358
    • /
    • 2013
  • In this study, the newest technology available to reduce GHG emissions, which can be applicable in energy industries of the future that has large reduction obligations by energy target management and large intensity of GHG emissions, has been investigated by searching the technical characteristics of each technology. The newest technology to reduce GHG emissions in the field of power generation and energy can be mainly classified into the improvement of efficiency, CCS, and gas combined-cycle technology. In order to improve the reliability of the GHG emission factor obtained from the investigation process, it has been compared to the technology-specific GHG emission factor derived from the estimated amount of emissions. Then the GHG abatement measures, using the derived estimation of factor, by using the newest technology to reduce GHG emissions have been predicted. As a result, the GHG reduction rate by technology of CCS development has been expected to be the largest more than 30%, and the abatement rate by technology of coal gasified fuel cell and pressurized fluidized-bed thermal power generation has been showed more than 20%. If the effective introduction of the newest technology and the study of its characteristics is continued, and properly applied for future GHG emissions, it can be prospected that the national GHG reduction targets can be achieved in cost-efficient way.

Development of Interlocking Signal Simulator for Verification of Naval Warship Engineering Control Logics (함정 통합기관제어체계의 제어로직 검증을 위한 연동신호 시뮬레이터 개발)

  • Lee, Hunseok;Son, Nayoung;Shim, Jaesoon;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1103-1109
    • /
    • 2021
  • ECS is a control device so that the warship can perform the mission stably by controlling and monitoring the entire propulsion system. As the recent provisions of the warship, it's propelling system is complicated than past, as the demand performance and mission of the warships are diverse. In accordance with the complicated propulsion system configuration, the demand for automatic control function of the ECS is increasing for convenient and stable propulsion system control for convenient and stable. As a result, verification of ECS stability and reliability is required. In this paper, we develop an interlocking signal simulator for verifying ECS control logic and communication protocol for warship with CODLOG propulsion systems. The simulator developed was implemented to simulate a signal of gas turbine, propulsion motors, diesel generator and 11 kinds of auxiliary equipment. The reliability of ECS was verified through the ECS communication program and the I/O signal static test with the simulator.

3D Explosion Analyses of Hydrogen Refueling Station Structure Using Portable LiDAR Scanner and AUTODYN (휴대형 라이다 스캐너와 AUTODYN를 이용한 수소 충전소 구조물의 3차원 폭발해석)

  • Baluch, Khaqan;Shin, Chanhwi;Cho, Yongdon;Cho, Sangho
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.19-32
    • /
    • 2022
  • Hydrogen is a fuel having the highest energy compared with other common fuels. This means hydrogen is a clean energy source for the future. However, using hydrogen as a fuel has implication regarding carrier and storage issues, as hydrogen is highly inflammable and unstable gas susceptible to explosion. Explosions resulting from hydrogen-air mixtures have already been encountered and well documented in research experiments. However, there are still large gaps in this research field as the use of numerical tools and field experiments are required to fully understand the safety measures necessary to prevent hydrogen explosions. The purpose of this present study is to develop and simulate 3D numerical modelling of an existing hydrogen gas station in Jeonju by using handheld LiDAR and Ansys AUTODYN, as well as the processing of point cloud scans and use of cloud dataset to develop FEM 3D meshed model for the numerical simulation to predict peak-over pressures. The results show that the Lidar scanning technique combined with the ANSYS AUTODYN can help to determine the safety distance and as well as construct, simulate and predict the peak over-pressures for hydrogen refueling station explosions.

Development of surface functional coating thin film utilizing combined processes of plasma activation surface treatment and nanoclay dispersion: In applications for transparent water vapor and oxygen barrier packaging films (플라즈마 활성화 표면처리 공정과 나노클레이 분산 적층 코팅을 이용한 표면 기능성 코팅 박막 개발: 수분 및 산소 차단성이 우수한 투명 포장재)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.97-103
    • /
    • 2023
  • Barrier films for transparent packaging materials with excellent moisture barrier properties are prepared, utilizing a nanoclay dispersion coating layer formed after a pretreatment process of plasma activation surface treatment process under vacuum at room temperature. Attention is paid on optimizing the coupling additive through the appropriate crosslinking process and optimal dispersion process of the coating process to enhance adhesion. Analysis of the functional coating thin film shows that the water vapor transmission rate is less than 10 g/m2/24 hrs (ASTM F-1249) and the oxygen transmission rate is less than 30 cc/m2/24 hrs (ASTM D3985). It is shown that water barrier properties of coating thin film prepared in this study are greater than conventional untreated films by 10 times or more. The thickness of the transparent gas barrier film is within 0.1 mm, and the transparent gas barrier complex is implemented in two layers. In the study of PET thin film interface characteristics, FT-IR experimental analysis shows the reaction activity was optimized at RDS 1.125 %.

Current Status of Satellite Remote Sensing-Based Methane Emission Monitoring Technologies (인공위성 원격탐사 기반 메탄 배출 모니터링 기술 현황)

  • Minju Kim;Jeongwoo Park;Chang-Uk Hyun
    • Economic and Environmental Geology
    • /
    • v.57 no.5
    • /
    • pp.513-527
    • /
    • 2024
  • Methane is the second most significant greenhouse gas contributing to global warming after carbon dioxide, exerting a substantial impact on climate change. This paper provides a comprehensive review of satellite remote sensing-based methane detection technologies used to efficiently detect and quantify methane emissions. Methane emission sources are broadly categorized into natural sources (such as permafrost and wetlands) and anthropogenic sources (such as agriculture, coal mines, oil and gas fields, and landfills). This study focuses on anthropogenic sources and examines the principles of methane detection using information from various spectral bands, including the shortwave infrared (SWIR) band, and the utilization of key satellite data supporting these technologies. Recently, deep learning techniques have been applied in methane detection research using satellite data, contributing to more accurate analyses of methane emissions. Furthermore, this paper assesses the practicality of satellite-based methane monitoring by synthesizing case studies of methane emission detection at global, regional, and major incident scales, including examples of applying deep learning techniques. At the global scale, research utilizing satellite sensors like the Sentinel-5P TROPOspheric Monitoring Instrument (TROPOMI) was reviewed. At the regional scale, studies were highlighted where TROPOMI data was combined with relatively high-resolution satellite data, such as the Sentinel-2 MultiSpectral Instrument (MSI) and GHGSat Wide-Angle Fabry-Perot (WAF-P) Imaging Spectrometer, to detect methane emissions and sources. Through this comprehensive review, the current state and applicability of satellite-based methane detection technologies are evaluated.

Capping Treatment for the Reduction of Phosphorus Release from Contaminated Sediments of Lakes (호소퇴적물로부터 인 용출 저감을 위한 Capping 처리)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Yun, Sang-Leen;Kim, So-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.438-446
    • /
    • 2006
  • A lab-scale batch test was conducted to develop capping materials to reduce the sediment phosphorus in the stagnant water zone of Gyeongancheon in Paldang Lake. The mean grain size(Mz) of sediment in the investigated area was 7.7 ${\phi}$, which is very fine, and the contents of organic carbon($C_{org}$) was 2.4%, which is very high. For the phosphorous release experiment to select the optimal capping material, sand layer, powder-gypsum($CaSO_4{\cdot}2H_2O$), granule-gypsum, complex layer(gypsum+sand) and the control were compared and evaluated in the 150 L reactor for 45 days. In case of the capping with the sand, it was found that the phosphorous from the sediment could be reduced by around 50%. However, it was found that this caused the reduction of the dissolved oxygen in the water column(by less than 3 mg/L) due to the resuspension of sediment and the organic matter decomposition that comes from the generation of $CH_4$ gas in the 1 cm of the sand layer. Therefore, it is likely that the sand layer has to be thickener in case of the sand capping. Powder-gypsum and granule-Gypsum reduced phosphorous release by more than 80%. However, the concentration of ${SO_4}^{2-}$ in the water column increased, making it difficult to apply it to the drinking water protection zone. We developed Fe-Gypsum and $SiO_2$-gypsum materials to reduce the solubility of ${SO_4}^{2-}$. Powder-Gypsum creates the interception film that does not have any aperture on the sediment layer when it is combined with the water. However phosphorous release caused by the generation of $CH_4$ gas may happen at a time when the gypsum layer has the crack. Capping through the complex layer(granule-Gypsum+sand(1 cm)) found to be suitable for the drinking water protection zone because it was effective to prevent phosphorus release. Moreover, this leads to the lower solubility from the concentration of ${SO_4}^{2-}$ into the water column than the powder-Gypsum and granule-Gypsum. The addition of gypsum($CaSO_4{\cdot}2H_2O$) into the sediment can reduce the progress of methanogensis because fast early diagenesis and sufficient supply of ${SO_4}^{2-}$ to the sediment, stimulate the SRB(sulfate reducing bacteria) highly.