• Title/Summary/Keyword: Gas-combined

Search Result 954, Processing Time 0.022 seconds

A Study on the Optimum Capacity of Combind Heat & Power Plant Related to Size of District Heating System (지역난방 규모에 따른 열병합발전플랜트의 경제적 최적용량 선정에 관한 연구)

  • Chung, Cahn-Kyo;Kim, Hoon
    • Journal of Energy Engineering
    • /
    • v.9 no.2
    • /
    • pp.95-101
    • /
    • 2000
  • The purpose of this study is to find plant utilities capacity for economical operation of combined heat & power by reducing energy expenditure. Using a numerical simulation program CHPSIM, a comparative analysis of additional heat expenditure (AHE) of combined heat & power plant in relation to size of district heating has been performed within the comparison of the difference capacity of gas turbine and steam turbine . As a results, if a 105.2MW gas turbine (exhaust gas temp ; 540$^{\circ}C$) installed in CHP plant can reduced 17-18% yearly the AHE than 75MW gas turbine (520$^{\circ}C$) installed. If a 130-150MW gas turbine (560-580$^{\circ}C$) installed, can reduced 34.7-35.8% of the yearly AHE.

  • PDF

A Study on Full and Part Load Operations of a Biogas-fired Gas Turbine Combined Heat and Power System (바이오 가스를 사용하는 가스터빈 열병합 시스템의 전부하 및 부분부하 운전특성 해석)

  • Kang, Do-Won;Lee, Jong-Jun;Kim, Tong-Seop;Hur, Kwang-Beom
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.35-40
    • /
    • 2011
  • This study analyzed the influence of firing biogas on the performance and operation of a gas turbine combined heat and power (CHP) system. A reference CHP system designed with natural gas fuel was set up and off-design simulation was made to investigate the impact of firing biogas in the system. Changes in critical operating parameters such as compressor surge margin and turbine blade temperature caused by firing biogas were examined, and a couple of operating schemes to mitigate their changes were simulated. Part load operation of the biogas-fired system was compared with that of natural-gas fired system, and it was found that as long as the two system produce the same electric power output, they exhibit nearly the same heat recovery.

A Study on Performance Degradation Analysis of Gas Turbine Combined Heat and Power Plant (가스터빈 열병합발전소 성능저하 분석에 관한 연구)

  • Kim, Hong Joo;Kim, Byeong Heon;Oh, Byeong Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.248-255
    • /
    • 2016
  • In this study, the degree of performance changes between the guaranteed performance and the performance after a certain operating start time is calculated by using the performance test of gas turbine CHP. The reason of the performance degradation will then be analysed. For some results of the CHP plant performance tests the comprehensive electric power output was 8,380 kW lower than the guaranteed performance, and the gas turbine's output was reduced to about 250 kW whenever ambient temperatures rose to $1^{\circ}C$. Also, causes of the performance degradation of gas turbines are ambient temperature rise, temperature aging and air compressor's efficiency drop.

Thermal Performance Analysis of Combined Power Plant Using Coal Gas - Development of the Steady-state Model - (석탄가스를 사용하는 복합발전 플랜트의 열성능 해석 -정상상태 성능해석 모델 개발-)

  • 김종진;박명호;안달홍;김남호;송규소;김종영
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.8-18
    • /
    • 1996
  • As a part of comprehensive IGCC process simulation, the thermal performance analysis was performed for coal gas firing combined power plant. The combined cycle analyzed consisted of il Texaco gasifier and a low temperature gas cleanup system for the gasification block and a GE 7FA gas turbine, a HRSG and steam turbine for the power block. A steady state simulator called ASPEN(Advanced System for Process Engineering) code was used to simulate IGCC processes. Composed IGCC configuration included air integration between ASU and gas turbine and steam integration between gasifier, gas clean up and steam turbine. The results showed 20% increase in terms of gas turbine power output(MWe) comparing with natural gas case based on same heat input. The results were compared with other study results which Bechtel Canada Inc. performed for Nova Scotia power plant in 1991 and the consistency was identified within two studies. As a result, the analysing method used in this study is verified as a sound tool for commercial IGCC process evaluation.

  • PDF

Design Performance Analysis of Micro Gas Turbine-Organic Rankine Cycle Combined System (마이크로 가스터빈과 유기매체 랜킨사이클을 결합한 복합시스템의 설계 성능해석)

  • Lee Joon Hee;Kim Tong Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.536-543
    • /
    • 2005
  • This study analyzes the design performance of a combined system of a recuperated cycle micro gas turbine (MGT) and a bottoming organic Rankine cycle (ORC) adopting refrigerant (R123) as a working fluid. In contrast to the steam bottoming Rankine cycle, the ORC optimizes the combined system efficiency at a higher evaporating pressure. The ORC recovers much greater MGT exhaust heat than the steam Rankine cycle (much lower stack temperature), resulting in a greater bottoming cycle power and thus a higher combined system efficiency. The optimum MGT pressure ratio of the combined system is very close to the optimum pressure ratio of the MGT itself. The ORC's power amounts to about $25\%$ of MGT power. For the MGT turbine inlet temperature of $950^{\circ}C$ or higher, the combined system efficiency, based on shaft power, can be higher than $45\%$.

A Study on the Combined Heat Transfer and Analysis Fire Induced Combustion Gas in a partially Open Enclosure (개구부가 있는 밀폐공간내 화재의 복합열전달 및 연소가스 분석에 관한 연구)

  • Park, Chan-Kuk;Chu, Byeong-Gil;Kim, Cheol
    • Fire Science and Engineering
    • /
    • v.11 no.1
    • /
    • pp.21-35
    • /
    • 1997
  • The natural convection and combined heat transfer induced by fire in a rectangular enclosure is numerically studied. The model for this numerical analysis is partially opened right wall. The solution procedure includes the standard k-$\varepsilon$ model for turbulent flow and the discrete ordinates method (DOM) is used for the calculation of radiative heat transfer equation. In numerical study, SIMPLE algorithm is applied for fluid flow analysis, and the investigations of combustion gas induced by fire is performed by FAST model of HAZARD I program. In this study, numerical simulation on the combined naturnal convection and radiation is carried out in a partial enclosure filled with absorbed-emitted gray media, but is not considered scattering problem. The streamlines, isothermal lines, average radiation intensity and kinetic energy are compared the results of pure convection with those of the combined convection-radiation, the combined heat transfer. Comparing the results of pure convection with those of the combined convection-radiation, the combined heat transfer analysis shows the stronger circulation than those of the pure convection. Three different locations of heat source are considered to observe the effect of heat source location on the heat transfer phenomena. As the results, the circulation and the heat transfer in the left region from heating block are much more influenced than those in the right region. It is also founded that the radiation effect cannot be neglected in analyzing the building in fire. And as the results of combustion gas analysis from FAST model, it is found that O2 concentration is decreased according to time. While CO and CO2 concentration are rapidly increased in the beginning(about 100sec), but slowly decreased from that time on.

  • PDF

Analysis of the Influence of Anti-icing System on the Performance of Combined Cycle Power Plants (가스터빈 결빙방지 시스템이 복합화력발전 시스템의 성능에 미치는 영향)

  • Moon, Seong Won;Kim, Jeong Ho;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.19-25
    • /
    • 2016
  • Anti-icing is important in gas turbines because ice formation on compressor inlet components, especially inlet guide vane, can cause performance degradation and mechanical damages. In general, the compressor bleeding anti-icing system that supplies hot air extracted from the compressor discharge to the engine intake has been used. However, this scheme causes considerable performance drop of gas turbines. A new method is proposed in this study for the anti-icing in combined cycle power plants(CCPP). It is a heat exchange heating method, which utilizes heat sources from the heat recovery steam generator(HRSG). We selected several options for the heat sources such as steam, hot water and exhaust gas. Performance reductions of the CCPP by the various options as well as the usual compressor bleeding method were comparatively analyzed. The results show that the heat exchange heating system would cause a lower performance decrease than the compressor bleeding anti-icing system. Especially, the option of using low pressure hot water is expected to provide the lowest performance reduction.

Performance Prediction of a Combined Heat and Power Plant Considering the Effect of Various Gas Fuels

  • Joo, Yong-jin;Kim, Mi-yeong;Park, Se-ik;Seo, Dong-kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • The performance prediction software developed in this paper is a process analysis tool that enables one to foretell the behavior of processes when certain conditions of operation are altered. The immediate objective of this research is to predict the process characteristics of combined heat and power plant under varying operating conditions. A cogeneration virtual power plant that mimics the mechanical performance of the actual plant was constructed and the performance of the power plant was predicted in the following varying atmospheric conditions: temperature, pressure and humidity. This resulted in a positive outcome where the performance of the power plant under changing conditions were correctly predicted as well as the calorific value of low calorific gas fuel such as shale gas and PNG. The performance prediction tool can detect the operation characteristics of the power plant through the performance index analysis and thus propose the operation method taking into consideration the changes in environmental conditions.

Economical and Environmental Study on SNG Combined Cycle Integrated with CCS for Large-Scale Reduction of CO2 (Based on NETL Report) (대용량 CO2 감축을 위한 CCS 연계 SNGCC의 경제성 및 환경성에 대한 연구(NETL 보고서를 중심으로))

  • SEO, DONG-KYUN;KWON, WON SOON
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.5
    • /
    • pp.499-506
    • /
    • 2015
  • Recently the Korean government announced its decision to select the $3^{rd}$ proposal, which targets reducing $CO_2$ by 37% of the BAU level by 2030, for the Intended Nationally Determined Contribution (INDC). According to this proposal, natural gas (or equivalent gas) combined cycle (NGCC) are suggested as alternatives for conventional pulverized coal (PC). In this study, we analyzed the environmental, economic, and energy mixing aspects of synthetic natural gas combined cycle(SNGCC) using NETL material (2011~2012 version) and other domestic materials (2014 version). We found the following conclusions: 1) Considering carbon capture and storage (CCS) integration, $CO_2$ emission factors of SNGCC and supercritical PC are the same. However, 60% of $CO_2$ from SNGCC is produced as high pressure and high purity (99%) gas, making it highly suitable for CCS, which is now strongly supported by the government. 2) Based on the economic analysis for SNGCC using domestic materials and comparison with NGCC, it was found that the settlement price of SNGCC was 30% lower than that of NGCC.

Seismic protection of LNG tanks with reliability based optimally designed combined rubber isolator and friction damper

  • Khansefid, Ali;Maghsoudi-Barmi, Ali;Khaloo, Alireza
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.523-532
    • /
    • 2019
  • Different types of gas reservoir such as Liquid Natural Gas (LNG) are among the strategic infrastructures, and have great importance for any government or their private owners. To keep the tank and its contents safe during earthquakes especially if the contents are of hazardous or flammable materials; using seismic protection systems such as base isolator can be considered as an effective solution. However, the major deficiency of this system can be the large deformation in the isolation level which may lead to the failure of bearing system. In this paper, as a solution, the efficacy of an optimally designed combined vibration control system, the combined laminated rubber isolator and rotational friction damper, is investigated to evaluate the enhancement of an existing metal tank response under both far- and near-field earthquakes. Responses like impulsive and convective accelerations, base shear, and sloshing height are studied herein. The probabilistic framework is used to consider the uncertainties in the structural modeling, as well as record-to-record variability. Due to the high calculation cost of probabilistic methods, a simplified structural model is used. By using the Mont-Carlo simulation approach, it is revealed that this combined isolation system is a highly reliable system which provides considerable enhancement in the performance of reservoir, not only leads to the reduction of probability of catastrophic failure of the tank but also decrease the reservoir damage during the earthquake. Moreover, the relative displacement of the isolation level is controlled very well by this combined system.