• Title/Summary/Keyword: Gas-Liquid Reaction

Search Result 247, Processing Time 0.034 seconds

Study on the Conversion of Ortho to Para Hydrogen (ORTHO/PARA 수소의 전환에의 연구)

  • Kim, Jong-Pal;Lee, Kwang-Hyun
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.317-324
    • /
    • 2007
  • The conversion reaction of ortho to para hydrogen was studied. The percentage of ortho and para hydrogen is mainly dependent on the equilibrium temperature. Because this reaction is known to be accelerated by the catalyst such as nickel-silicate and ruthenium on silica, we focused in the test and development of the catalysts. We studied metal-silicates because they provide high metal dispersion on support. Nickel-silicate, ruthenium-silicate and mixed-silicate were prepared by the coprecipitation method and used in the reaction at the temperature of liquid nitrogen. The conversion was measured by the difference of thermal conductivity between reference gas and sample gas. The activation condition was important and it affected the activities of the catalysts. Nickel-silicate showed high activities. Ruthenium-silicate also showed relative high activities but mixed-silicate showed poor activities.

Employing high-temperature gas flux in a residual salt separation technique for pyroprocessing

  • Kim, Sung-Wook;Heo, Dong Hyeon;Kang, Hyun Woo;Hong, Sun-Seok;Lee, Sang-Kwon;Jeon, Min Ku;Hur, Jin-Mok;Choi, Eun-Young
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1866-1870
    • /
    • 2019
  • Residual salt separation is an essential step in pyroprocessing because its reaction products, as prepared by electrochemical unit processes, contain frozen residual electrolyte species, which are generally composed of alkali-metal chloride salts (e.g., LiCl, KCl). In this study, a simple technique that utilizes high-temperature gas flux as a driving force to melt and push out the residual salt in the reaction products was developed. This technique is simple as it only requires the use of a heating gun in combination with a gas injection system. Consequently, $LiNO_3-ZrO_2$ and $LiCl-ZrO_2$ mixtures were successfully separated by the high-temperature gas injection (separation efficiency > 93%), thereby demonstrating the viability of this simple technique for residual salt separation.

Absorption of Carbon Dioxide into Aqueous AMP Solutions

  • So, Won-Seob;Suh, Dong-Soo;Park, Moon-Ki
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.79-84
    • /
    • 1998
  • The rates of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol (AMP) were measured using a semibatch stirred vessel with a plane gas-liquid interface at $25^{\circ}C.$ The absorption rates under the fast reaction regime were analysed using chemical absorption theory. The reaction was found to be first order with respect to both $CO_2$ and the amine.

  • PDF

Absorption of Carbon Dioxide into Aqueous AMP Solutions

  • Won Seob So;Don
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.79-84
    • /
    • 1993
  • The rates of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1 propanol (AMP) were measured using a semibatch stirred vessel with a plane gas-liquid interface at $25^{\circ}C$. The absorption rates under the fast reaction regime were analysed using chemical absorption theory. The reaction was found to be first order with respect to both $CO_2$ and the amine.

  • PDF

Effects of Pores on the Microstructure of Melt-Processed $YBa_2Cu_3O_{7-x}$ Oxides (용융공정으로 제조한 $YBa_2Cu_3O_{7-x}$ 산화물의 미세조직에 미치는 기공의 영향)

  • 김찬중;홍계원
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.117-123
    • /
    • 2001
  • Formation of pores in melt-processed $YBa_2Cu_3O_{7-x}$ (123) oxides and its effect on the microstructure were studied. Spherical pores with a size of a few tens of microns were formed due to the evolution of oxygen gas during melting of a 123 oxide. Some of pores were converted into liquid pockets by liquid filling, but others remained unfilled. The liquid pockets were converted into spherical 123 regions with a lower $Y_2BaCuO_5$ (211)density through the peritectic reaction during subsequent cooling, while the pores were entrapped into the periteictically grown 123 grains. The spherical 123 regions often consists of a residual melt due to the unbalanced peritectically reaction.

  • PDF

A study on the fabrication of lithium carbonation powder by gas-liquid reaction using ultrasonic energy (탄산리튬 분말 제조에 있어서 초음파 에너지를 적용한 기액반응에 관한 연구)

  • Kim, Dae-Weon;Kim, Bo-Ram;Choi, Hee-Lack
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.55-60
    • /
    • 2020
  • In the previous study, we reported the result to prepare lithium carbonate powder from various lithium-contained solution. Therefore, using the lithium hydroxide solution, it is conformed that the reaction could occur thermodynamically, and the recovery rate of lithium was 89.4 %. In this study, we carried out the experiment to prepare lithium carbonate powder through gas-liquid reactions with lithium hydroxide solution and CO2 gas using ultrasound energy. In case ultrasonic energy is applied to the reaction of lithium carbonate, the recovery rate of lithium at room temperature was approximately 83.8 %, and the recovery rate of lithium was greatly increased to approximately 99.9 % at 60℃ reaction temperature. And when ultrasonic energy is not applied, the particle size of lithium carbonate powder was 7.7 ㎛ in D50. But the particle size of lithium carbonate powder was significantly reduced to 8.4 ㎛ in D50 under the influence of ultrasonic.

Experimental and Numerical Study on Characteristics of Air-assisted Spray and Spray Flames (2유체 분무의 연소특성에 관한 실험 및 수치 해석적 연구)

  • Kim, Dong-Il;Oh, Sang-Huen
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.51-63
    • /
    • 1998
  • Air-assisted atomizer flames are investigated numerically to study spray structures in nonburning and burning conditions based on experimental data. A PDA is used to measure droplet size, velocity, and number density for both nonburning and burning spray. Computations utilize time-averaged gas-phase equations and $k-{\varepsilon}$ turbulence model for simplicity. The major features of the liquid-phase model are that a SSF approach is used to represent the effect of gas-phase turbulence on droplet trajectories and vaporization, an infinite-diffusion model is employed to represent the transient liquid-phase process. Computation and experiment results show that the droplet acceleration and evaporation proceed quickly in near the atomizer, characterizing high number densities and a strong convective effect. The primary combustion zone, however, is dorminated by the gas phase reaction and exhibits a sheath combustion.

  • PDF

Evaluation of the SWR′s Early Pressure Variations in the KALIMER IHTS (KALIMER IHTS의 SWR 초기 압력파 거동 분석)

  • 김연식;심윤섭;김의광;어재혁
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.122-129
    • /
    • 2002
  • The analytical models and algorithm of the SPIKE code, which has been developed by KAERI's KALIMER team to investigate the sodium-water reaction phenomena in the liquid metal reactor, were introduced with its verification calculation results. The sodium water reaction of KALIMER IHTS was evaluated. Early stage of the sodium-water reaction consists of wave and mass transfer regimes. The pressure variations were independent of specific design features in the wave transfer regime. However in the mass transfer regime, the pressure variations were strongly dependent on cover gas volume and rupture disk set pressure. The early stage SWR analysis showed that the KALIMER IHTS with an appropriate cover gas volume and rupture disk set pressure had enough margin to its design pressure.

Combustion and Emission Characteristics in a High Compression Ratio Spark Ignition Engine using Off-gas from FT reaction (FT반응 Off-gas를 이용한 고압축비 전기점화 엔진의 연소 및 배기가스 특성에 관한 연구)

  • Chung, Tahn;Lee, Junsun;Lee, Yonggyu;Kim, Changup;Oh, Seungmook
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.114-121
    • /
    • 2018
  • FT process is a technology of chemical reactions that converts a mixture of carbon monoxide and hydrogen into liquid hydrocarbons. During the FT process unreacted gas, known as Off-gas which has low-calorie, is discharged. In this study, we developed an engine that utilize simulated Off-gas, and studied the characteristics of the engine. The off-gas composition is assumed to be $H_2$ 70%, CO 15%, $CO_2$ 15% respectively. Under stoichiometric air-fuel ratio, the experiment was conducted at WOT and IMEP 0.3 Mpa changing compression ratio. Ignition timing was applied with MBT timing. Maximum indicated thermal efficiency 37% was achieved at compression ratio 15 under WOT. CO, $CO_2$ and $NO_x$ were influenced by changing compression ratio, and CO emission was satisfied with the US Tier 4 standard for nonroad engine over the entire experimental conditions.

In situ UHV TEM studies on nanobubbles in graphene liquid cells

  • Shin, Dongha;Park, Jong Bo;Kim, Yong-Jin;Kim, Sang Jin;Kang, Jin Hyoun;Lee, Bora;Cho, Sung-Pyo;Novoselov, Konstantin S.;Hong, Byung Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.102-102
    • /
    • 2016
  • Water, which is most abundant in Earth surface and very closely related to all forms of living organisms, has a simple molecular structure but exhibits very unique physical and chemical properties. Even though tremendous effort has been paid to understand this nature's core substance, there amazingly still lefts much room for scientist to explore its novel behaviors. Especially, as the scale goes down to nano-regime, water shows extraordinary properties that are not observable in bulk state. One of such interesting features is the formation of nanoscale bubbles showing unusual long-term stability. Nanobubbles can be spontaneously formed in water on hydrophobic surface or by decompression of gas-saturated liquid. In addition, the nanobubbles can be generated during electrochemical reaction at normal hydrogen electrode (NHE), which possibly distorts the standard reduction potential at NHE as the surface nanobubble screens the reaction with electrolyte solution. However, the real-time evolution of these nanobubbles has been hardly studied owing to the lack of proper imaging tools in liquid phase at nanoscale. Here we demonstrate, for the first time, that the behaviors of nanobubbles can be visualized by in situ transmission electron microscope (TEM), utilizing graphene as liquid cell membrane. The results indicate that there is a critical radius that determines the long-term stability of nanobubbles. In addition, we find two different pathways of nanobubble growth: i) Ostwald ripening of large and small nanobubbles and ii) coalescence of similar-sized nanobubbles. We also observe that the nucleation and growth of nanoparticles and the self-assembly of biomolecules are catalyzed at the nanobubble interface. Our finding is expected to provide a deeper insight to understand unusual chemical, biological and environmental phenomena where nanoscale gas-state is involved.

  • PDF