• Title/Summary/Keyword: Gas-Liquid

Search Result 2,862, Processing Time 0.027 seconds

Thermohydraulic Characteristics of Two-Phase Flow in a Submerged Gas Injection System (잠겨진 가스분사장치에서의 2상유동의 열수력학적 특성)

  • Choi, Choeng Ryul;Kim, Chang Nyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1327-1339
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas Injection system. Effects of both the gas flow rate and bubble size were investigated. In addition, heat transfer characteristic and effects of heat transfer were investigated when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for the formulation of both the continuous and the dispersed phases. The turbulence in the liquid phase was modeled by the use of the standard $k-{\varepsilon}$ turbulence model. The interphase friction and heat transfer coefficient were calculated by means of correlations available in the literature. The turbulent dispersion of the phases was modeled by introducing a "dispersion Prandtl number". The plume region and the axial velocities are increased with increases in the gas flow rate and with decreases in the bubble diameter. The turbulent flow field grows stronger with the increases in the gas flow rate and with the decreases in the bubble diameter. In case that the heat transfer between the liquid and the gas is considered, the axial and the radial velocities are decreased in comparison with the case that there is no temperature difference between the liquid and the gas when the temperature of the injected gas is higher than the mean liquid temperature. The results in the present research are of interest in the design and the operation of a wide variety of material and chemical processes.

Experimental Study on Cryogenic Propellant Circulation using Gas-lift (Gas-lift를 이용한 극저온 추진제의 재순환 성능에 대한 실험)

  • Kwon, Oh-Sung;Lee, Joong-Youp;Chung, Yong-Gahp
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.551-554
    • /
    • 2006
  • Inhibition of propellant temperature rising in liquid propulsion rocket using cryogenic fluid as a propellant is very important. Especially propellant temperature rising during stand-by after filling and pre-pressurization can bring into cavitation in turbo-pump. One of the method preventing propellant temperature rising in cryogenic feeding system is recirculating propellant through the loop composed of propellant tank, feed pipe, and recirculation pipe. The circulation of propellant is promoted through gas-lift effect by gas injection to lower position of recirculation pipe. In this experiment liquid oxygen and gas helium is used as propellant and injection gas. Under atmospheric and pressurized tank ullage condition, helium injection flow-rate is varied to observe the variation of recirculating flow-rate and propellant temperature in the feed pipe. There is appropriate helium injection flow-rate for gas-lift recirculation system.

  • PDF

Reduction of Grid Size Dependency in DME Spray Modeling with Gas-jet Model (가스 제트 모델을 이용한 DME 분무 해석의 격자 의존성 저감)

  • Oh, Yun-Jung;Kim, Sa-Yop;Lee, Chang-Sik;Park, Sung-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.170-176
    • /
    • 2010
  • This paper describes the grid-size dependency of the conventional Eulerian-Lagrangian method to spray characteristics such as spray penetration and SMD in modeling DME sprays. In addition, the reduction of the grid-size dependency of the present Gas-jet model was investigated. The calculations were performed using the KIVA code and the calculated results were compared to those of experimental result. The results showed that the conventional Eulerian-Laglangian model predicts shorter spray penetration for large cell because of inaccurate calculation of momentum exchange between liquid and gas phase. However, it was shown that the gas-jet model reduced grid-size dependency to spray penetration by calculating relative velocity between liquid and ambient gas based on gas jet velocity.

A Study of the Performance Improvement of a Centrifugal Separator for Gas-Liquid Two-Phase Flow (기액이상류 원심분리기의 성능개선에 관한 연구)

  • Kim, Jin-Man;Lee, Jun-Hee;Yoon, Yong-Kwan;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3215-3220
    • /
    • 2007
  • Gas-liquid separator has been designed for the sake of reducing expenses associated with production operations. To date, a number of gas-liquid separators have been installed and put to use for various applications. Despite the advantages of simple and compact configuration of separator with no moving part, its efficient operation is limited in terms of total pressure losses, separation performance and flow-induced noise and vibration, which are closely associated with the very complicated flow phenomena involved. In the present study, a gas-liquid centrifugal separator with a swirl vane is investigated for the purpose of water separation from compressed moisture air. The 3D Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Based upon the obtained solutions, tangential velocities, centrifugal forces, vortices and total pressure losses are analyzed to find out the best design parameters. From the present study, several attempts are made to improve the performance of conventional separators of centrifugal type.

  • PDF

Estimation of Density of Methane and Ethane and Vapor-Liquid Equilibrium Predictions for Methane-Ethane Binary System Using PR and PC-SAFT Equations of State (PR 및 PC-SAFT 상태방정식을 이용한 메탄과 에탄의 기상과 액상의 밀도 추산 및 이성분계의 기-액 상평형 계산)

  • Park, Jong-Kee;Choi, Kun-Hyung;Lee, Sang-Gyu;Yang, Young-Myung;Cho, Jung-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.22-26
    • /
    • 2010
  • In this study, experimental vapor pressures and densities of vapor and liquid phases versus temperature were estimated using PC-SAFT equation. The estimated results were compared with those using PR equation of state. For the vapor phase densities, both equations well predicted the literature data. However, PC-SAFT equation showed better prediction capability for liquid phase densities. In the comparison of vapor-liquid equilibrium prediction capability for the binary systems of methane and ethane, PC-SAFT equation was better than the PR equation.

An Experimental Study on the Performance Characteristics of Hot-gas and Liquid Bypass Heat Pump Systems for Capacity Modulation (고온가스 및 액체 바이패스 적용 용량가변 히트펌프의 성능특성에 관한 실험적 연구)

  • Ahn, Jae Hwan;Joo, Youngju;Yoon, Won Jae;Kang, Hoon;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.137-142
    • /
    • 2013
  • A small air-conditioner or chiller for a constant temperature bath normally uses a constant speed compressor. The constant speed compressor is relatively inexpensive, but it uses on/off control for capacity modulation. The on/off control has several disadvantages, specifically energy loss and large temperature fluctuation. Continuous operation with a bypass system can be an alternative to on/off control, for capacity modulation. In this study, a heat pump system having a hot-gas bypass and a liquid bypass was adopted. The performance of the bypass-type heat pump was measured, by varying the bypass valve opening. The differences of the COP between the hot-gas bypass and the liquid bypass, in the cooling and heating operations, were within 2% and 1%, respectively. The liquid bypass showed a wider range of capacity control in the cooling operation but the hot-gas bypass showed a wider range of capacity control in the heating operation.

Program Development for the Mode Calculation of Gas-Generator Cycle Liquid Rocket Engine (가스발생기 사이클 액체로켓 엔진의 모드 해석 프로그램 개발)

  • Park, Soon-Young;Cho, Won-Kook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.366-370
    • /
    • 2008
  • Mode analysis is very important for the development of liquid rocket engine in various applications. We developed a mode analysis program for the gas-generator cycle liquid rocket engine by proposing 13 independent equations with 13 independent variables which can be solved by Newton method. As an example we calculated the change of engine operating mode according to the control valve's loss coefficient change located in the gas-generator oxidizer supply line. And we concluded that this program can give basic idea for the mode analysis of gas-generator cycle liquid rocket engine.

  • PDF

Effect of Promoting/Inhibiting Bubble Generation of Carbonate Solution on Superhydrophilic/Superhydrophobic Surfaces (극친수/극소수 표면에서 탄산용액의 기포 발생 촉진/억제 효과 분석 연구)

  • Lee, Jeong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.77-83
    • /
    • 2022
  • When carbon dioxide in a liquid becomes supersaturated, carbon dioxide gas bubbles are generated in the liquid, and they ascend to the surface as they develop further. At this time, the inner wall of the cup with carbon gas attached is known as the entrapped gas cavity (EGS); once an EGS is established, it does not disappear and will continuously create carbon bubbles. This bubbling phenomenon can be activated or suppressed by changing the properties of the solid surface in contact with the carbonated liquid. In this study, the foaming of carbonated liquid is promoted or suppressed by modifying the wettability of the surface. A micro/nano surface structure is formed on the surface of an aluminum cup to produce a superhydrophilic surface, and a superhydrophobic surface similar to a lotus leaf is synthesized via fluorination. Experiment results show that the amount of carbon dioxide bubble generated differs significantly in the first few seconds depending on the surface, and that the amount of gas generated after it enters the stabilization period is the same regardless of the wettability of the cup surface.

Effect of Gas Density on Self-Pulsation in Liquid-Gas Swirl Coaxial Injector (액체-기체 와류동축형 분사기의 자기-맥동에 대한 기체 밀도의 영향)

  • Ahn, Jonghyeon;Kang, Cheolwoong;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.134-143
    • /
    • 2022
  • When a recess is applied to a swirl coaxial injector that uses liquid and gas propellants, a self-pulsation phenomenon in which the spray oscillates at regular intervals may occur. The phenomenon is caused by the interaction between the liquid and gas propellants inside the injector recess region. The propellants' kinetic energies are expected to affect significantly the spray oscillation. Therefore, cold-flow tests using helium as a gas-simulating propellant were conducted and compared with the results of the previous study using air. Dynamic pressure was measured in the injector manifold and frequency characteristics were investigated through the fast Fourier transform analysis. In the experimental environment, the helium density was about seven times lower than the air density. Accordingly, the intensity of pressure fluctuations was confirmed to be greater when air was used. At the same kinetic energy condition, the perturbation frequency was almost identical in the low flow rate conditions. However, as the flow rate increased, the self-pulsation frequency was higher when helium was used.

Fabrication and Characterization of Gas-liquid Hybrid Reactor Equipped with Atmospheric Pressure Plasma (기-액 하이브리드 대기압 플라즈마 반응기 제작 및 특성 분석)

  • Kwon, Heoung Su;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.452-458
    • /
    • 2022
  • Three types of gas-liquid hybrid horizontal, vertical and needle-to-cylinder plasma reactors were fabricated. Through these reactors, a high-efficiency, eco-friendly cleaning concept that generates reactive active species generated in atmospheric plasma discharge and gas-liquid activation reaction of cleaning components through the potential difference within the electrode was presented. As a result of comparing the efficiency for cleaning performance, the needle-to-cylinder type reactor had the best characteristics. Through this study, it was confirmed that the gas-liquid hybrid atmospheric pressure plasma reactor has the potential to be applied to ultra-precision cleaning processes such as semiconductor processes.