• Title/Summary/Keyword: Gas turbines

Search Result 247, Processing Time 0.028 seconds

Various Heat Exchangers Utilized in Gas-Turbines for Performance Enhancement

  • Jeong, Ji-Hwan;Kim, Lae-Sung;Ha, Man-Young;Kim, Kui-Soon;Cho, Jong-Rae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.1
    • /
    • pp.30-36
    • /
    • 2008
  • Modern world takes advantages of gas-turbines for various purposes. Most of gas-turbines incorporate various heat exchangers in order to achieve specific functions and enhance thermal efficiency as well. This paper reviews heat exchangers that had been used, currently being used, and under development for the future application in various kinds of gas turbines. The heat exchanger matrix configurations and manufacturing methods depend on where they are applied. This review work shows that the recent advancement in heat exchanger technologies makes it possible to develop intercoolers and recuperators for large gas turbines as well as micro gas turbines.

A REVIEW OF HELIUM GAS TURBINE TECHNOLOGY FOR HIGH-TEMPERATURE GAS-COOLED REACTORS

  • No, Hee-Cheon;Kim, Ji-Hwan;Kim, Hyeun-Min
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • Current high-temperature gas-cooled reactors (HTGRs) are based on a closed Brayton cycle with helium gas as the working fluid. Thermodynamic performance of the axial-flow helium gas turbines is of critical concern as it considerably affects the overall cycle efficiency. Helium gas turbines pose some design challenges compared to steam or air turbomachinery because of the physical properties of helium and the uniqueness of the operating conditions at high pressure with low pressure ratio. This report present a review of the helium Brayton cycle experiences in Germany and in Japan. The design and availability of helium gas turbines for HTGR are also presented in this study. We have developed a new throughflow calculation code to calculate the design-point performance of helium gas turbines. Use of the method has been illustrated by applying it to the GTHTR300 reference.

Performance Characteristics for Off-design Operation of Micro Gas Turbines (마이크로 가스터빈의 탈설계 운전 성능특성)

  • Kim, T.S.;Hwang, S.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.39-47
    • /
    • 2004
  • Micro gas turbines are designed with low turbine inlet temperature and pressure ratio. To overcome the efficiency defect of the simple cycle, adoption of the recuperator is an inevitable choice. In addition to the design performance, we should also pay attention to the off-design performance of gas turbines since they usually operate at part-load conditions lot a considerable amount of their lifetime. This study analyzes off-design performance characteristics of micro gas turbines and addresses the importance of the recuperation process doting the part load operation. Comparative analyses have been performed to evaluate the part load performance differences among various design and operating options : simple vs recuperative cycles, single vs two shaft configurations, various operating strategies for the single shaft configuration, and current vs advanced engines. Major finding is that maintaining high turbine exhaust temperature is crucial for efficient operation of micro gas turbines.

Performance Characteristics for Off-design Operation of Micro Gas Turbines (마이크로 가스터빈의 탈설계 운전 성능특성)

  • Hwang, S.H.;Kim, T.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.80-87
    • /
    • 2003
  • Micro gas turbines are designed with low turbine inlet temperature and pressure ratio. To overcome the efficiency defect of the simple cycle, adoption of the recuperator is an inevitable choice. In addition to the design performance, we should also pay attention to the off-design performance of gas turbines since they usually operate at part-load conditions for a considerable amount of the time. This study aims at analyzing off-design performance characteristics of micro gas turbines and addressing the importance of the recuperator in the part load operation. Comparative analyses have been performed to evaluate the part load performance differences among various design and operating options : simple vs recuperative cycles, single vs two shaft configurations, various operating strategies for the single shaft configuration (fuel only control, variable speed operation, variable inlet guide vane control), and current vs advanced engines. Major finding is that maintaining turbine at high level is crucial in efficient operation of micro gas turbines.

  • PDF

The Basic Study on Economic Evaluation of Distributed Energy System Installed in Hospital (병원건물 분산에너지시스템 도입에 따른 경제성분석)

  • Hong, Won-Pyo;Kim, Hyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1136_1138
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that burn gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF

The Basic Study on Economic Evaluation of Micro-turbine and Alternative Energy system Installed in Hospital (병원건물의 마이크로터빈과 신재생에너지도입에 따른 경제성평가 기초연구)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.439-444
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of. solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that bum gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF

Economic Evaluation of Building Micro-Grid Including Geothermal Energy System in Hospital Buildings (지열시스템이 포함된 빌딩마이크로그리드 시스템의 에너지성능평가 및 경제성분석)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.273-277
    • /
    • 2009
  • This paper presents a basic energy performance data of micro gas turbine, Renewable Energy(BIPV and Solar Collector System, geothermal system) and a hybrid energy system(geothermal system and microturbine) installed in Hospital Building. The efficiency of solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that bum gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently, the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. Finally, in energy performance aspect, Micro gas turbine system and hybrid energy system were high-efficiency system in hospital building. Hybrid energy system also give us a powerful alternative energy system economically.

  • PDF

Program Development for Design and Part Load Performance Analysis of Single-Shaft Gas Turbines (단축가스터빈의 설계점 및 부분부하 성능해석 프로그램 개발)

  • Kim, Dong-Seop;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2409-2420
    • /
    • 1996
  • This paper describes the development of a general program for the design and part load performance analysis of single-shaft-heavy-duty gas turbines. Efforts are made to fully represent the real component features by the characteristic models and special emphasis is put on the modeling of cooled turbine stages. The design analysis routine is applied to simulate the performance of current gas turbines and its appropriateness for system analysis is validated. Meanwhile, the component parameters of real engines which describe the technology level are obtained. The program is extended to predicting the part load operation of gas turbines with the aid of models for the off-design characteristics of compressor, turbine and other main components. Part load simulation can be carried out only with limited numbers of input data. It is demonstrated that the program accurately estimates the part load characteristics of real turbines.

Introduction of Off-Gas Power Plant and Localization Development of Auxiliary Equipment (부생복합발전 소개와 주요설비 국산화를 위한 연구)

  • Ko, Minseok;Kim, Dohyung;Lee, Dongsu;Lee, Seong-geun
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.127-128
    • /
    • 2013
  • Off-gas power plant is a renewable energy power plant which generate electrical energy using the low calorie FOG and BFG as main fuel. This combined cycle power plant is comprised of gas turbines, gas compressors, steam turbines, generators, and auxiliary equipment such as gas mixer, mixing tank, and gas cooler. In this paper, a off-gas power plant and development of its several equipment using CFD are introduced.

  • PDF

Performance evaluation of a steam injected gas turbine CHP system using biogas as fuel (바이오 가스를 연료로 사용하는 증기분사 가스터빈 열병합발전 시스템의 성능분석)

  • Kang, Do-Won;Kang, Soo-Young;Kim, Tong-Seop;Hur, Kwang-Beom
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.57-62
    • /
    • 2010
  • MW-class gas turbines are suitable for distributed generation systems such as community energy systems(CES). Recently, biogas is acknowledged as an alternative energy source, and its use in gas turbines is expected to increase. Steam injection is an effective way to improve performance of gas turbines. This study intended to examine the influence of injecting steam and using biogas as the fuel on the operation and performance a gas turbine combined heat and power (CHP) system. A commercial gas turbine of 6 MW class was used for this study. The primary concern of this study is a comparative analysis of system performance in a wide biogas composition range. In addition, the effect of steam temperature and injected steam rate on gas turbine and CHP performance was investigated.