• Title/Summary/Keyword: Gas turbine model

Search Result 324, Processing Time 0.03 seconds

A Study on Fuzzy Trend Monitoring Method for Fault Detection of Gas Turbine Engine (가스터빈 엔진의 손상 진단을 위한 퍼지 경향감시 방법에 관한 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young;Oh, Sung-Hwan;Kim, Ji-Hyun;Ko, Han-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.1-6
    • /
    • 2008
  • This work proposes a fuzzy trend monitoring method for the fault detection of a gas turbine engine through analyzing measured performance data trend. The proposed trend monitoring technique can diagnose the engine status by monitoring major engine measured parameters such as fuel flow rate, exhaust gas temperature, rotor rotational speed and vibration, and then analyzing their time deppendent changes. In order to perform this, firstly the measured engine performance data variation is formulated using Linear Regression, and then faults are isolated and identified using fuzzy logic.

A Numerical Analysis on the Characteristics of Spray by Swirl Injector in Gas Turbine Combustor (가스터빈연소기에서 스월 인젝터의 분무특성에 관한 연구)

  • 이성혁;유홍선;이인섭;홍성국
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.30-39
    • /
    • 2000
  • The present paper deals with the numerical simulation for the spray characteristics with swirling turbulent flows and dilution flows from swirl injectors in a simplified can type of gas turbine combustor. The main objective is to investigate the characteristics of swirling turbulent flows with dilution flows and to provide the qualitative results for the spray characteristics such as the droplet distribution and Sauter Mean Diameter(SMD). The gas-phase equations based on Eulerian approach were discretized by Finite Volume Method, together with SIMPLE algorithm and the Reynolds -Stress-Model. The liquid-phase equations based on Lagrangian method were used to predict the droplet behavior. The results of preliminary test are generally in good agreement with experimental data, and show that the anisotropy exists in the primary zone due to swirl velocity and injected air from primary injector, and then gradually decays due to turbulent mixing and consequently near-isotropy occurs in the region between primary and dilution zones. For the spray characteristics, it is indicated that the swirling flows of primary jet region increase the droplet atomization. In addition, it is showed that the swirling flows at the inlet region lead the air-fuel mixture to be distributed near the igniter and can significantly affect the spray behavior in the primary jet region.

  • PDF

A Fuzzy Model on the PNN Structure and its Applications

  • Sang, R.S.;Oh, Sungkwun;Ahn, T.C.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.259-262
    • /
    • 1997
  • In this paper, a fuzzy model based on the polynomial Neural Network(PNN) structure is proposed to estimate the emission pattern for air pollutant in power plants. The new algorithm uses PNN algorithm based on Group Method of Data Handling (GMDH) algorithm and fuzzy reasoning in order to identify the premise structure and parameter of fuzzy implications rules, and the least square method in order to identify the optimal consequence parameters. Both time series data for the gas furnace and data for the NOx emission process of gas turbine power plants are used for the purpose of evaluating the performance of the fuzzy model. The simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy anhd feasibility than other works achieved previously.

  • PDF

Design of Extended Multi-FNNs model based on HCM and Genetic Algorithm (HCM과 유전자 알고리즘에 기반한 확장된 다중 FNN 모델 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.420-423
    • /
    • 2001
  • In this paper, the Multi-FNNs(Fuzzy-Neural Networks) architecture is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNNs architecture uses simplified inference and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNNs according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNNs model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model we use the time series data for gas furnace and the NOx emission process data of gas turbine power plant.

  • PDF

Coupled Thermal-Structural Analysis of the Combustor Assembly of 200kW Micro Gas Turbine Engine (200kW급 마이크로 가스터빈 연소기의 열-구조 연성 해석)

  • Park, Sangjin;Rhee, Huinam;Lee, Sang Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4093-4099
    • /
    • 2014
  • In this study, the thermal-structural behavior of the combustor assembly of 200 kW micro gas turbine system was performed. The typical combustor assembly consists of a Liner, Inner & Outer Case, Burner and Nozzle ring, etc. There are some gaps and friction elements between the components to compensate for the different thermal expansions of various components. Therefore, the developed finite element model includes nonlinear elements. The boundary support conditions of the combustor assembly significantly affect the stress distribution due to the high temperature gradient. This paper deals with parametric studies to quantitatively determine the effects of the variation of the support conditions on the stress distribution and deformation of various components of combustor assembly. These results may be useful for the design of the combustor assembly.

LES Analysis on Combustion Characteristics of a Hydrogen/Methane Gas Turbine Combustor (LES 기법을 이용한 수소/메탄 가스터빈 연소기의 연소특성 분석)

  • Nam, Jaehyun;Lee, Younghun;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.589-595
    • /
    • 2020
  • Large eddy simulation (LES) of a partially premixed gas turbine combustor is conducted. Four different hydrogen compositions are considered to investigate the fuel composition effects on the flow field inside the combustor. The comparison with the experimental flame structure and velocity profile is conducted to verify the LES results, revealing that the partially premixed flame structure is altered when hydrogen composition is changed. The flame structure becomes shorter and thicker as the hydrogen composition is increased, and therefore, the flame effect in the rigid wall is minimized. The change in the recirculation zone at the combustor wall with hydrogen addition is further investigated. Overall, the LES with combustion model is quite promising for accurately predicting the reactive flow characteristics in connection with the fuel composition.

Measurement Uncertainty Analysis of a Turbine Flowmeter for Fuel Flow Measurement in Altitude Engine Test (엔진 고공 시험에서 연료 유량 측정용 터빈 유량계의 측정 불확도 분석)

  • Yang, In-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Measurement uncertainty analysis of fuel flow using turbine flowmeter was performed for the case of altitude engine test. SAE ARP4990 was used as the fuel flow calculation procedure, as well as the mathematical model for the measurement uncertainty assessment. The assessment was performed using Sensitivity Coefficient Method. 11 parameters involved in the calculation of the flow rate were considered. For the given equipment setup, the measurement uncertainty of fuel flow was assessed in the range of 1.19~1.86 % for high flow rate case, and 1.47~3.31 % for low flow rate case. Fluctuation in frequency signal from the flowmeter had the largest influence on the fuel flow measurement uncertainty for most cases. Fuel temperature measurement had the largest for the case of low temperature and low flow rate. Calibration of K-factor and the interpolation of the calibration data also had large influence, especially for the case of very low temperature. Reference temperature, at which the reference viscosity of the sample fuel was measured, had relatively small contribution, but it became larger when the operating fuel temperature was far from reference temperature. Measurement of reference density had small contribution on the flow rate uncertainty. Fuel pressure and atmospheric pressure measurement had virtually no contribution on the flow rate uncertainty.

Robust Observer Design for an Isolated Power System with Model Uncertainty using H-Norm

  • Goya, Tomonori;Senjyu, Tomonobu;Omine, Eitaro;Yona, Atsushi;Urasaki, Naomitsu;Funabashi, Toshihisa
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.498-504
    • /
    • 2010
  • The output power fluctuations of renewable energy power plants such as wind turbine generators and photovoltaic systems result in frequency deviations and terminal voltage fluctuations. Furthermore, these power fluctuations also affect the turbine shaftings of diesel generators and gas-turbine generators which are the main power generation systems on isolated islands. Therefore, it is important to achieve torsional torque suppression. Since the measurement of torsional torque is technically difficult, and there is an uncertainty in the mechanical constants of the shaft torsional system. This paper presents an estimation system that estimates torsional torque by using a developed $H_{\infty}$ observer. In addition to the above functions, the proposed shaft torque observer incorporates a parameter identification system that aims to improve the estimation accuracy. The simulation results validate the effectiveness of the proposed $H_{\infty}$ observer and the parameter identification.

Aerodynamic design and optimization of a multi-stage axial flow turbine using a one-dimensional method

  • Xinyang Yin;Hanqiong Wang;Jinguang Yang;Yan Liu;Yang Zhao;Jinhu Yang
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.245-256
    • /
    • 2023
  • In order to improve aerodynamic performance of multi-stage axial flow turbines used in aircraft engines, a one-dimensional aerodynamic design and optimization framework is constructed. In the method, flow path is generated by solving mass continuation and energy conservation with loss computed by the Craig & Cox model; Also real gas properties has been taken into consideration. To obtain an optimal result, a multi-objective genetic algorithm is used to optimize the efficiencies and determine values of various design variables; Final design can be selected from obtained Pareto optimal solution sets. A three-stage axial turbine is used to verify the effectiveness of the developed optimization framework, and designs are checked by three-dimensional CFD simulation. Results show that the aerodynamic performance of the optimized turbine has been significantly improved at design point, with the total-to-total efficiency increased by 1.17% and the total-to-static efficiency increased by 1.48%. As for the off-design performance, the optimized one is improved at all working points except those at small mass flow.

Modeling of Non-Equilibrium Kinetics in Gas Generator including Soot Formation (Soot 생성을 고려한 가스발생기의 Kerosene/LOx의 비평형 화학반응 모델링)

  • Yu, Jung-Min;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.150-153
    • /
    • 2006
  • Gas generator should be adopted either fuel rich or oxidizer rich combustion because of the temperature restriction to avoid any possible thermal damages to turbine blade. This study focuses to model the non-equilibrium chemical reaction of kerosene/LOx with detailed kinetics developed by Dagaut using Perfectly stirred reactor(PSR) assumption. To predict more reliable species fraction and other gas properties, Frenklach's soot model was added to Dagaut's detailed kinetics.

  • PDF