• Title/Summary/Keyword: Gas temperature measurement

Search Result 593, Processing Time 0.027 seconds

An Empirical Study on Real-Time Temperature and Concentration Measurement Through Optical Absorption Characteristic Analysis of Gas in a Large Combustion System (가스의 광 흡수 특성 분석을 통한 대형 연소시스템 내 실시간 온도 및 농도 계측에 관한 실증 연구)

  • Park, Jiyeon;So, Sunghyun;Park, Daeguen;Ryu, Changkook;Lee, Changyeop;Yoo, Miyeon
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.29-38
    • /
    • 2020
  • It is practically difficult to accurately measure the temperature and concentration of a large combustion systems at industrial sites in real time. Temperature measurement using thermocouple, which are mainly used, is a point-measuring method that is less accurate and less reliable to analyze the wide area range of inner combustion system, and has limitations to internal accessibility. In terms of concentration analysis, most measurement methods use sampling method, which are limited by the difficulty of real-time measurement. As a way to overcome these limitations, laser-based measurement methods have been developed continuously. Laser-based measurement are line-average measurement methods with high representation and precision, which are beneficial for the application of large combustion systems. In this study the temperature and concentration were measured in real time by water vapor and oxygen generated during combustion using Tunable Diode Laser Absorption Spectroscopy (TDLAS). The results showed that the average temperature inside the combustion system was 1330℃ and the mean oxygen concentration was 3.3 %, which showed similar tendency with plant monitoring data.

Measurement Uncertainty Analysis of a Turbine Flowmeter for Fuel Flow Measurement in Altitude Engine Test (엔진 고공 시험에서 연료 유량 측정용 터빈 유량계의 측정 불확도 분석)

  • Yang, In-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Measurement uncertainty analysis of fuel flow using turbine flowmeter was performed for the case of altitude engine test. SAE ARP4990 was used as the fuel flow calculation procedure, as well as the mathematical model for the measurement uncertainty assessment. The assessment was performed using Sensitivity Coefficient Method. 11 parameters involved in the calculation of the flow rate were considered. For the given equipment setup, the measurement uncertainty of fuel flow was assessed in the range of 1.19~1.86 % for high flow rate case, and 1.47~3.31 % for low flow rate case. Fluctuation in frequency signal from the flowmeter had the largest influence on the fuel flow measurement uncertainty for most cases. Fuel temperature measurement had the largest for the case of low temperature and low flow rate. Calibration of K-factor and the interpolation of the calibration data also had large influence, especially for the case of very low temperature. Reference temperature, at which the reference viscosity of the sample fuel was measured, had relatively small contribution, but it became larger when the operating fuel temperature was far from reference temperature. Measurement of reference density had small contribution on the flow rate uncertainty. Fuel pressure and atmospheric pressure measurement had virtually no contribution on the flow rate uncertainty.

Phase-Resolved CARS Temperature Measurement in a Lean Premixed Gas Turbine Combustor (I) -Effect of Equivalence Ratio on Phase-Resolved Gas Temperature- (CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정 (I) -연료/공기 혼합정도가 위상별 온도에 미치는 영향-)

  • Lee Jong Ho;Jeon Chung Hwan;Park Chul Woong;Hahn Jae Won;Chang Young June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1184-1192
    • /
    • 2004
  • Experimental investigations were carried out in an atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on methane gas. The objective of this study was to obtain the phase-resolved gas temperatures at different phases of the oscillating pressure cycle during unstable combustion. CARS temperature measurements were made at several spatial locations under lean premixed conditions to get the information on temperature field within the combustor. Also the effect of incomplete fuel-air mixing on phase-resolved temperature fluctuation was investigated. Results including phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs) were provided in this paper. Temperature PDFs gave an insight on the flame behavior. And strong correlation between phase-resolved temperature profile and pressure cycle was observed. Results of the phase-resolved high temperature gave an additional information on the perturbation of equivalence ratio at flame as well as the effect of mixing quality on NOx emission characteristics.

Evaluation of Component Performance of a Commercial Micro Gas Turbine (상용 마이크로 가스터빈의 구성부 성능분석)

  • Lee, J.J.;Yun, J.E.;Kim, T.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.331-337
    • /
    • 2005
  • This study aims at evaluation of component performance of a commercial micro gas turbine by detailed measurements of various system parameters. A test facility to measure performance of a micro gas turbine was set up. Performance parameters such as turbine exit temperature, exhaust gas temperature, engine inlet temperature, compressor discharge pressure and fuel flow rate were measured. Variations in measured data and estimated performance parameters were analyzed. In addition to overall engine performance, component characteristic parameters including the turbine inlet temperature, the compressor efficiency, the turbine efficiency, the recuperator effectiveness were estimated. Behaviors of the estimated characteristic parameters with operating condition change were examined.

  • PDF

Density Measurement Comparisons of Specific Gravity Meter and Gas Chromatography in the Field (실제조건에서 기준 밀도계와 가스 분석기에 의한 밀도 측정 결과 비교)

  • Lee, Kang-Jin;Her, Jae-Young;Ha, Young-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.90-96
    • /
    • 1999
  • In contracts for sales of natural gas between sellers and buyers, it is not suncient to only measure a volumetric quantity of gas in flowing conditions in metering station. Therefore the measured volumetric quantity must be converted to that of reference conditions. The density of the natural gas required in such a calculation can be measured directly or estimated from the equation of sate or any other experimental methods. The specific gravity meter is the apparatus used to measure the density of fluids under the reference conditions and it can be widely used in industrial areas, especially in massive flow rate natural gas industry. This study has been carried out in an attempt to improve measurement accuracy of natural gas flow rate calculation, providing the adequate installation and proper operation conditions of specific gravity meter. The test results are 1) the density measurement errors in case of using methane and standard gas as calibration gases are smaller than using methane and nitrogen gas, 2) the periodical calibration to maintain accurate density measurements is essential, and 3) the specific gravity meter is sensitive to changes of environmental conditions, especially environmental temperature surrounding the specific gravity meter.

  • PDF

A Study on the Analysis of Measurement Errors of Specific Gravity Meter (기준 밀도계의 측정 오차 분석에 관한 연구)

  • Lee, Kang-Jin;Her, Jae-Young;Ha, Young-Cheol;An, Seung-Hee;Lee, Seung-Jun;Lee, Cheol-Gu
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.676-680
    • /
    • 2002
  • The specific gravity meter is the instrument used to measure the density of fluids under the reference conditions and it can be widely used in industrial areas, especially in massive flow rate natural gas industry. This study has been carried out in an attempt to improve measurement accuracy of natural gas flow rate calculation, providing the adequate installation and proper operation conditions of specific gravity meter. The test results are 1) the density measurement errors in case of using methane and standard gas as calibration gases are smaller than using methane and nitrogen gas, 2) the periodical calibration to maintain accurate density measurements is essential, and 3) the specific gravity meter is sensitive to changes of environmental conditions, especially environmental temperature surrounding the specific gravity meter.

Measurement of combustion gas temperature using laser-induced breakdown spectroscopy (레이저 유도 플라즈마 분광분석법을 이용한 연소 가스 온도 측정 기술)

  • Lee, Seok Hwan;Kim, Yong-Gyoo;Kang, Woong;Joung, Wukchul;Lee, Joo Hyun;Kim, Sunghun;Yang, Inyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.285-289
    • /
    • 2017
  • Laser-induced breakdown spesctroscopy (LIBS) is a technique that complements the disadvantages of conventional laser-based combustion diagnosis techniques such as weak signal strength, complex equipment configuration, and low accuracy. In this study, basic research was carried out to measure the combustion gas temperature of scramjet engines using LIBS. Spray flames were generated from Jet A-1 fuel used in scramjet engines and gas temperatures were measured at the top of the flames with a calibrated thermocouple. The LIBS signals were acquired at the same points as the temperature measurement positions of the thermocouple. The LIBS spectra were analyzed to obtained a calibration curve between the LIBS signal and the reference temperature measured at the thermocouple. Therefore, it was confirmed that the combustion gas temperature can be measured in-situ using LIBS.

  • PDF

An Investigation of Combustion Emission Characteristics of Kerosene Fan Heater with Addition of Water Droplets by Ultrasonic Atomizer (초음파 수첨가 연소에 의한 석유 홴 히터의 배기가스 특성 고찰)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.44-53
    • /
    • 1999
  • This study is concerned with the emission characteristics of kerosene fan heater, which is burned with kerosene and water droplets simultaneously in the burner, in order to prohibit the emissions of harmful exhaust gas and reduce smell caused by incomplete combustion, and the addition of water droplets to the conventional kerosene fan heater was performed by ultrasonic atomizer. For the investigation of this study, the measurement of exhaust gas components and exhaust gas temperature was carried out by using an automatic combustion gas analyser and $NO_x$ analyser, and the measurement of consumption weight of oil and water was obtained by using electric digital balance. Consequently, according as the water percent weight ratio of about $21{\sim}23%$ was supplied for this study, it was found that the combustion-generated $NO_x$ and CO emissions were reduced very largely, but the emissions of $O_2\;and\;CO_2$ and the temperature of exhaust gas were not changed.

  • PDF

Development of a Gas Flow Measurement and Control System (가스 유량 계측 및 제어 시스템 연구)

  • 전학진;양종화
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.255-259
    • /
    • 1996
  • This paper describes a system for measurement and control of a gas flow. In order to measure the flux of gas and control a vavle according to flux, this system was developed. This system is implemented on the personal computer and its environment is developed tool called TMS. This system includes a main program and Tele-Metering Unit for transmitting correcting flow value based on temperature and pressure in flow computer and AD converter for transmitting instantaneous flow rate, temperature and pressure as interface part of personal computer. This system was made by Visual C++ program. Using this system, inspected data for the recognition of transmitting flow value are generated on the screen, file and printer. The activity, reliability of this system was verified on Daegu-Citygas that aids the system for the acquisition of inspected data by realtime application.

  • PDF

Electrical Behaviors of SnO2 Thin Films in Hydrogen Atmosphere (수소가스분위기하에서의 SnO2 박막의 전기적 거동)

  • 김광호;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.341-348
    • /
    • 1988
  • Thin films of tin-oxide were prepared by chemical vapor deposition technique using the direct of SnCl4. Resistivity and carrier concentration of deposited SnO2 thin film were measured by 4-point probe method and Hall effect measurement. The results showed the remarkable dependence of electrical properties on the deposition temperature. As the deposition temperature increased, resistivity of deposited film initially decreased to a minimum value of ~10-3$\Omega$cm at 50$0^{\circ}C$, and then rapidly increased to ~10$\Omega$cm at $700^{\circ}C$. Electrical conductance of these films was measured in exposure to H2 gas. It was found that gas sensitivity was affected combination of film thickness and intrinsic resistivity of deposited film. Gas sensitivity increased with decrease of film thickness. Fairly high sensitivity to H2 gas was obtained for the film deposited at $700^{\circ}C$. Optimum operation temperature of sensing was 30$0^{\circ}C$ for H2 gas.

  • PDF