• 제목/요약/키워드: Gas sensitivity

검색결과 969건 처리시간 0.028초

결정성장 억제재를 첨가한 SnO$_{2}$ 미세입자의 메탄가스 감지효과 (Methane gas sensing effect of SnO$_{2}$ fine particle mixed with inhibitor to crystal growth)

  • 홍영호;강봉휘;이덕동
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.38-43
    • /
    • 1996
  • A coprecipitation method was used for preparing Ca and Pt doped $SnO_2$ fine powder. Components of the powder were investigated by XPS and SIMS. Crystallite size and specific surface area were investigated by TEM, XRD, and BET analysis. $SnO_2$(Ca)/Pt based thick film devices were prepared by a screen printing technique for methane gas detection. Then sensing characteristics of the devices were investigated. As Ca and Pt added, the crystal growth of $SnO_2$ was suppressed during calcining and sintering, and the sensitivity of $SnO_2$(Ca)/Pt thick film to methane gas was enhanced. For the Pt doped $SnO_2$ fine particle, the thick film device shows sensitivity of about 83% to 2000 ppm methane gas at an operating temperature of >$400^{\circ}C$.

  • PDF

박막형 $WO_{3}$계 가스센서의 NOx 감도 특성 (NOx Sensing Characteristics of the $WO_{3}$-Based Thin-Film Gas Sensors)

  • 유광수
    • 센서학회지
    • /
    • 제5권5호
    • /
    • pp.39-46
    • /
    • 1996
  • $WO_{3}$에 미량의 Pd 또는 Pt가 첨가된 박막을 이용한 NOx 센서를 제조하였다. $WO_{3}$계 박막은 고진공, 저항가연식 evaporator를 이용하여 분위기온도에서 증착한 다음 $500^{\circ}C$에서 열처리하였다. 5 ppm의 $NO_{2}$가스에 대하여 $200^{\circ}C$에서 측정한 가스감도($R_{gas}/R_{air}$)는 0.5 wt.% $Pt-WO_{3}$ 센서에서 50으로서 최대값을 가졌다.

  • PDF

나노 가스 감지 소자의 특성에 미치는 촉매 구조의 영향 (Elect of Catalytic Configuration on Sensing Properties of Nano Gas Sensor)

  • 홍성제;;한정인
    • 한국전기전자재료학회논문지
    • /
    • 제18권10호
    • /
    • pp.917-923
    • /
    • 2005
  • In this paper, effect of catalytic configuration on the sensing properties of $SnO_2$ nanoparticle gas sensitive thick film was investigated. Two types of catalytic configuration, mono and binary, were made on the $SnO_2$ nanoparticle. In case of mono catalytic system, $3 wt\%$ Pd or Pt catalyst was doped onto the $SnO_2$ nanoparticle, respectively. In case of binary catalytic system, Pd and Pt was doped simultaneously with concentration ratio of 1:2 to 2:1 onto the $SnO_2$ nanoparticle. After doping, gas sensitive thick film was printed on alumina substrate and heat-treated at 450 to $600^{\circ}C$. Gas sensing properties was evaluated using 500 to 10,000 ppm $CH_4$ gas. As a result, gas sensitive thick film with binary catalytic system showed unstable phenomena that the gas sensitivity was changed according to aging time. In contrary, the mono catalytic system showed relatively stable phenomena despite of aging time. Especially, gas sensitive thick film doped with $3 wt\%$ Pt catalyst and heat-treated at $500^{\circ}C$ showed good sensing properties such as 0.57 of $R_{3500}/R_{1000}$ and very small variation within $3.5\%$ after aging for 5 hours, and response time was very short less than 20 seconds.

플라즈마 및 니트로셀롤로우스로 처리된 유리기판을 사용한 MWCNT 스프레이 박막의 수소가스 검출특성 (Sensing Properties of Hydrogen Gas for the MWCNT Thin Film Sprayed on the Glass Substrate Cured with Plasma and Nitrocellulose)

  • 장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제24권4호
    • /
    • pp.290-296
    • /
    • 2011
  • Carbon nanotubes (CNTs) have excellent electrical, chemical stability, mechanical and thermal properties. In this paper, networks of Multi-walled carbon nanotube (MWCNT) materials were investigated as a resistive gas sensors for the $H_2$ gas detection. Sensor films were fabricated by the air spray method using the multi-walled CNTs dispersion solution on the glass substrates cured with plasma and nitrocellulose. Sensors were characterized by the resistance measurements in the self-fabricated oven in order to find the optimum detection properties for the hydrogen gas molecular. The sensitivity and the linearity of the MWVNT sensors using the glass substrate cured with plasma for the $H_2$ gas concentration of 0.06~0.6 ppm are 0.013~0.097%/sec and 0.131~0.959%FS, respectively. The MWCNT film was excellent in the response for the hydrogen gas moleculars and its reaction speed was very fast, which could be using as hydrogen gas sensor. The resistance of the fabricated sensors decreases when the sensors are exposed to $H_2$ gas.

SnO2 나노 분말의 합성 및 가스 감응 특성 (Gas Sensing Characteristics and Preparation of SnO2 Nano Powders)

  • 이지영;유윤식;유일
    • 한국전기전자재료학회논문지
    • /
    • 제24권7호
    • /
    • pp.589-593
    • /
    • 2011
  • [ $SnO_2$ ]nano powders were prepared by solution reduction method using tin chloride($SnCl_2{\cdot}2H_2O$), hydrazine($N_2H_4$) and NaOH. The $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $300^{\circ}C$ in air, respectively. XRD patterns of the $SnO_2$ nano powders showed the tetragonal structure with (110) dominant orientation. The particle size of $SnO_2$ nano powders at the ratio of $SnCl_2:N_2H_4$+NaOH= 1:6 was about 60 nm. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box. Sensitivity of $SnO_2$ gas sensor to 5 ppm $CH_4$gas and 5 ppm $CH_3CH_2CH_3$ gas was investigated for various $SnCl_2:N_2H_4$+NaOH proportion. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of $SnO_2$ sensors was observed at the $SnCl_2:N_2H_4$+NaOH= 1:8 and $SnCl_2:N_2H_4$+NaOH= 1:6, respectively. Response and recovery times of $SnO_2$ gas sensors prepared by $SnCl_2:N_2H_4$+NaOH= 1:6 was about 40 s and 30 s, respectively.

아세토나이트릴 가스 검지를 위한 센스의 제작 및 특성 (Characteristics of metal-loaded TiO2/SnO2 thick film gas sensor for detecting acetonitrile)

  • 박영호;이창섭
    • 한국가스학회지
    • /
    • 제13권2호
    • /
    • pp.23-29
    • /
    • 2009
  • Pt, Pd, In 등의 촉매금속을 사용하여 아세토나이트릴 유독가스에 대한 감도를 향상시키는 SnO2 가스센스에 대하여 연구하였다. Metal-SnO2 후막은 백금전극이 내장된 알루미나 지지체의 스크린법으로 제작되었다. 본 센서의 특성은 검출가스의 농도의 함수로 반응기내 각센서의 전기적 저항을 측정하여 조사하였으며, 10-50ppm 범위의 유독가스 농도에 대하여 검지 측정하였다. 그 결과 촉매금속의 종류에 따라 센서에서 반응하는 감도가 각각 다르게 선택성을 갖고 있는 것으로 나타났다.

  • PDF

3D 프린팅을 이용한 Pt/Carbon Nanotube composite 기반 전기화학식 황화수소 가스 센서 제작 (Fabrication of Pt/Carbon Nanotube Composite Based Electrochemical Hydrogen Sulfide Gas Sensor using 3D Printing)

  • 하윤태;권진범;최수지;정대웅
    • 센서학회지
    • /
    • 제32권5호
    • /
    • pp.290-294
    • /
    • 2023
  • Among various types of harmful gases, hydrogen sulfide is a strong toxic gas that is mainly generated during spillage and wastewater treatment at industrial sites. Hydrogen sulfide can irritate the conjunctiva even at low concentrations of less than 10 ppm, cause coughing, paralysis of smell and respiratory failure at a concentration of 100 ppm, and coma and permanent brain loss at concentrations above 1000 ppm. Therefore, rapid detection of hydrogen sulfide among harmful gases is extremely important for our safety, health, and comfortable living environment. Most hydrogen sulfide gas sensors that have been reported are electrical resistive metal oxide-based semiconductor gas sensors that are easy to manufacture and mass-produce and have the advantage of high sensitivity; however, they have low gas selectivity. In contrast, the electrochemical sensor measures the concentration of hydrogen sulfide using an electrochemical reaction between hydrogen sulfide, an electrode, and an electrolyte. Electrochemical sensors have various advantages, including sensitivity, selectivity, fast response time, and the ability to measure room temperature. However, most electrochemical hydrogen sulfide gas sensors depend on imports. Although domestic technologies and products exist, more research is required on their long-term stability and reliability. Therefore, this study includes the processes from electrode material synthesis to sensor fabrication and characteristic evaluation, and introduces the sensor structure design and material selection to improve the sensitivity and selectivity of the sensor. A sensor case was fabricated using a 3D printer, and an Ag reference electrode, and a Pt counter electrode were deposited and applied to a Polytetrafluoroethylene (PTFE) filter using PVD. The working electrode was also deposited on a PTFE filter using vacuum filtration, and an electrochemical hydrogen sulfide gas sensor capable of measuring concentrations as low as 0.6 ppm was developed.

스플라인-축 연결을 갖는 보조동력장치 가스터빈의 로터다이나믹 설계민감도 해석 (Rotordynamics Design Sensitivity Analysis of an APU Gas Turbine having a Spline Shaft Connection)

  • 이안성;하진웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.593-598
    • /
    • 2000
  • In this paper the critical speed analysis and design sensitivity investigation are carried out with an APU(auxiliary power unit) gas turbine having a spline shaft connection. The DDM(direct differential method) is directly applied to formulate the critical speed design sensitivity problem of a general nonsymmetric-matrix rotor-bearing system. The design sensitivity analysis have shown that the critical speed change rate to the support modeling of the spline shaft connection point is extremely negligible, and thereby its design uncertainty is lifted. It has also been confirmed that the critical speeds up to the 4th are not sensitive to the design stiffness coefficients of 4-main bearings or supports, including two air foil bearings. Further, the critical speed change rate to the shaft-element length have shown quantitatively that the spline shaft has some limited influence on the 4th critical speed.

  • PDF

Synthesis of TiO2 Nanotubes and Their Sensitivity for Toluene Gas

  • Yue, H.Y.;Huang, S.;Guo, E.J.;Wang, L.P.;Kang, F.W.;Yu, Z.M.;Guo, Y.K.;Sun, F.L.
    • 한국분말재료학회지
    • /
    • 제18권1호
    • /
    • pp.14-17
    • /
    • 2011
  • $TiO_2$ nanopowders with anatase structure were firstly prepared by controlling the pH value of a precursor solution without any heat-treatment at room temperature. The prepared $TiO_2$ nanopowders were hydrothermally treated in 10M NaOH solution at $170^{\circ}C$. Then, the samples were washed in DI water or 0.1M HCl. The $TiO_2$ nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The gas sensitivity of $TiO_2$ nanotubes for toluene gas was also investigated. The results show that $TiO_2$ nanotubes can be prepared by hydrothermal treatment. The morphology of $TiO_2$ nanotubes prepared by 0.1M HCl washing is destroyed to some extent. $TiO_2$ nanotubes with DI water washing show better sensitivity than that with 0.1M HCl washing.

100 MWe급 순산소연소 발전소 보일러계통 공정설계 및 운전변수 민감도 예측 (100 MWe Oxyfuel Power Plant Boiler System Process Design and Operation Parameters Sensitivity Analysis)

  • 백세현;고성호
    • 한국연소학회지
    • /
    • 제18권4호
    • /
    • pp.1-11
    • /
    • 2013
  • The oxy-fuel combustion is $CO_2$ capture technology that uses mixture of pure $O_2$ and recirculated exhaust as oxidizer. Currently some Oxy-fuel power plants demonstration project is underway in worldwide. Meanwhile research project for converting 125 MWe Young-Dong power plant to 100 MWe oxy-fuel power plants is progress. In this paper, 1 D process analytical approach was applied for conducting process design and operating parameters sensitivity analysis for oxy-fuel combustion of Young-Dong power plant. As a result, appropriate gas recirculation rates was 74.3% that in order to maintain normal rating superheater, reheater steam temperature and boiler heat transfer patterns. And boiler efficiency 85.0%, CPU inlet $CO_2$ mole concentration 71.34% was predicted for retrofitted boiler. The oxygen concentration in the secondary recycle gas is predicted as 27.1%. Meanwhile the oxygen concentration 22.4% and moisture concentration 5.3% predicted for primary recycle gas. As the primary and secondary gas recirculation increases, then heat absorption of the reheater is tends to increases whereas superheater side is decreased, and also the efficiency is tends to decrease, according to results of sensitivity analysis for operating parameters. In addition, the ambient air ingression have a tendency to lead to decline of efficiency for boiler as well as decline of $CO_2$ purity of CPU inlet.