• Title/Summary/Keyword: Gas sensitivity

Search Result 969, Processing Time 0.026 seconds

Fabrication of Semiconductor Gas Sensor Array and Explosive Gas-Sensing Characteristics (반도체 가스 센서 어레이의 제작 및 폭발성가스 감응 특성)

  • Lee, Dae-Sik;Jung, Ho-Yong;Ban Sang-Woo;Lee, Min-Ho;Huh, Jeung-Soo;Lee, Duk-Dong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.11
    • /
    • pp.9-17
    • /
    • 2000
  • A sensor array with 10 discrete sensors integrated on a substrate was developed for discriminating the kinds and quantities of explosive gases. The sensor array consisted of 10 oxide semiconductor gas sensors with $SnO_2$ as base material and had broad sensitivity to specific gas. The sensor array was designed with uniform thermal distribution and had also high sensitivity and reproductivity to low gas concentration through nano-sized sensing materials with different additives. By using the sensitivity signal of the sensor array at $400^{\circ}C$, we could reliably discriminate the kinds and quantities of explosive gases like butane, propane and methane under the lower explosion limit through the principal component analysis (PCA) method.

  • PDF

A Study on the Improvement of Sensing Ability of ZnO Varistor-type Gas Sensors (ZnO 바리스터형 가스 센서의 감도 향상에 관한 연구)

  • 한세원;조한구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.271-274
    • /
    • 2000
  • Gas sensor materials capable of detecting hydrogen gases (H$_2$) or nitrogen oxides (NO$\_$x/, primarily NO and NO$_2$) with high sensitivity have attracted much interest in conjunction with the growing concern to the protection of global environments. Beside conventional sensor materials, such as semiconductors., conducting polymers and solid electrolytes, the potential of sensor materials with a new method for detecting hydrogen gases or nitrogen oxides gas has also been tested. The breakdown voltage of porous varistors shifted to a low electric field upon exposure to H$_2$ gas, whereas it shifted to a reverse direction in an atmosphere containing oxidizing gases such as O$_3$ and NO$_2$ in the temperature range of 300 to 600$^{\circ}C$. Furthermore, it was found that the magnitude of the breakdown voltage shift, i. e. the magnitude of sensitivity, was well correlated with gas concentration, and that the H$_2$ sensitivity was improved by controlling the composition of the Bi$_2$O$_3$ rich grain boundary phase. However, NO$\_$x/ sensing properties of porous varistors have not been studies in detail. The objective of the present study is to investigate the effect of the composition of the Bi$_2$O$_3$ rich grain boundary phase and other additive such as A1$_2$O$_3$ on the hydrogen gases (H$_2$) sensing properties of porous ZnO based varistors.

  • PDF

Pattern Recognition for Typification of Whiskies and Brandies in the Volatile Components using Gas Chromatographic Data

  • Myoung, Sungmin;Oh, Chang-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.167-175
    • /
    • 2016
  • The volatile component analysis of 82 commercialized liquors(44 samples of single malt whisky, 20 samples of blended whisky and 18 samples of brandy) was carried out by gas chromatography after liquid-liquid extraction with dichloromethane. Pattern recognition techniques such as principle component analysis(PCA), cluster analysis(CA), linear discriminant analysis(LDA) and partial least square discriminant analysis(PLSDA) were applied for the discrimination of different liquor categories. Classification rules were validated by considering sensitivity and specificity of each class. Both techniques, LDA and PLSDA, gave 100% sensitivity and specificity for all of the categories. These results suggested that the common characteristics and identities as typification of whiskies and brandys was founded by using multivariate data analysis method.

Performance Optimization of a Gas-Assisted Hydraulic Breaker with Dual Stroke (가스보조식 이중행정 유압브레이커의 성능 최적화)

  • Ryoo, Taek-Jik;Chang, Hyo-Whan
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • A gas-assisted hydraulic breaker uses both hydraulic and pneumatic energies and the appropriate balance between them mostly effects its performance. Mathematical modeling of the breaker is established and verified by experiment. Through sensitivity analysis using AMESim, the key design parameters are selected, which mostly affect the performance of the breaker. Taguchi method is used to optimize the key design parameters to maximize the output power for long and short strokes through simulation. As the result, the output power as well as the impact energy are increased significantly compared with the existing design. The pressure pulsation in the supply line is reduced to a tolerable level and the dynamic characteristics of the piston displacement is also improved by the optimization.

  • PDF

Small Methane Detection System using Optical Spectrum Characteristics (분광특성을 이용한 소형의 메탄 가스 감지 시스템)

  • Jo, Kyung-Hwa;Lyu, Geun-Jun;Kim, Eung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.53-57
    • /
    • 2011
  • We developed a small methane detection system because methane gas is used in many areas and is dangerous. The developed system consisted of LD(Laser Diode) tuned a wavelength of $1.65\;{\mu}m$, two mirrors to collect a laser beam, photo detector. It could detect methane gas at a long range and its sensitivity was 1.98 V/$CH_4%$.

The Changes of CO Gas Sensing Properties of ZnO and $SnO_2$ with Addition $TiO_2$ ($TiO_2$첨가에 의한 ZnO와 $SnO_2$의 일산화탄소 감응특성 변화)

  • Kim, Tae-Won;Choi, U-Sung;Jun, Seon-Taek
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.312-316
    • /
    • 1998
  • ZnO- TiO$_2$, and Sn0$_2$ - Ti0$_2$ ceramic composites doped with TiO$_2$ were prepared and their electrical and 1000ppm CO gas sensing properties were investigated. The phases of samples were analyzed by XRD, and the microsturctures of the fractured surface of samples were observed by SEM. A carbon monoxide gas sensitivity was de¬fined as the ratio of the resistance in dry air atmosphere(R$drt air$) to the resistance in 1000ppm CO gas atmosphere(R$_co$) The CO gas sensitivity of Smol% Ti0$_2$-added ZnO decreased about 1.7 times compared to that of pure ZnO. On the other hand, the maximum CO gas sensitivity of Ti0$_2$-added SnO$_2$ increased about 2.5 times compared to that of pure SnO$_2$. Therefore, the CO gas sensitivies of SnO$_2$-TiO$_2$ composite were better than those of ZnO- Ti0$_2$ and the temper¬ature range showing the maximum sensitivity for Sn0$_2$-TiO$_2$ composite was lower than that for ZnO- Ti0$_2$.

  • PDF

NOx Gas Detection Characterization with Vgs in the MWCNT Gas Sensor of MOS-FET Type (MOS-FET구조의 MWCNT 가스센서에서 Vgs의 변화에 따른 NOx 가스 검출 특성)

  • Kim, Hyun-Soo;Park, Yong-Seo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.257-261
    • /
    • 2014
  • Carbon nanotubes (CNT) has the excellent physical characteristics in the sensor, medicine, manufacturing and energy fields, and it has been studied in those fields for the several years. We fabricated the NOx gas sensors of MOS-FET type using the MWCNT. The fabricated sensor was used to detect the NOx gas for the variation of $V_{gs}$ (gate-source voltage) with the ambient temperature. The gas sensor absorbed the NOx gas molecules showed the decrease of resistance, and the sensitivity of sensor was reduced by the NOx gas molecules accumulated on the MWCNT surface. Furthermore, when the voltage ($V_{gs}$) was applied to the gas sensor, the term of the decrease in resistance was increased. On the other hand, the sensor sensitivity for the injection of NOx gas was the highest value at the ambient temperature of $40^{\circ}C$. We also obtained the adsorption energy ($40^{\circ}C$) using the Arrhenius plots by the reduction of resistance due to the $V_{gs}$ voltage variations. As a result, we obtained that the adsorption energy also was increased with the increasement of the applied $V_{gs}$ voltages.

Fabrication and Characteristics of Thick Film Alcohol Gas Sensors (후막형 알코올 센서의 제조 및 특성)

  • Choi Dong-Han
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.387-390
    • /
    • 2004
  • Thick film alcohol gas sensors were fabricated. Their electrical properties and gas sensing characteristics were investigated. The sensitivity of $1wt.\%$ Pd-doped ${\gamma}-Fe_2O_3$ thick film heat treated at $400^{\circ}C$, 2hrs was $74\%$ to 500ppm alcohol gas at the operating temperature of $250^{\circ}C$. The selectivity of the film to alcohol was good. It showed fast response time to low concentrations of alcohol in air, hence this sensor can be used as a breath sensor.

  • PDF

Study for Enhancement of the Detection Sensitivity in Hand-Held X-Ray Fluorescence Device (휴대용 XRF 장치의 검출감도 향상에 관한 연구)

  • Kim, Sung-Soo;Lee, Youn-Seoung;Kim, Do-Yun;Ko, Dong-Seob
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.409-415
    • /
    • 2011
  • The method to improve the detection sensitivity of Hand-held XRF (X-Ray Fluorescence) device currently being developed is discussed. To minimize the loss of the intensity due to atmospheric gas molecules, the vacuum module, which can be filled with atmospheric or He gas, between the sample and the detector was installed. And the change of the detection sensitivity was measured in a vacuum and in the He gas-filled state. As a result, the following three important results were obtained; Firstly, XRF intensity was increased 2~4 times in the low energy range (3~4 keV). It is a very important result because the enhancement of the detection sensitivity means shortening of the detection time in Hand-held XRF device. Secondly, the possibility of detection of the elements less than 3 keV in emission energy was confirmed. Thirdly, the absorption by atmospheric gas molecules can be minimized without vacuum- sealed vessel in Hand-held XRF device, if the vacuum module filled with He gas is used. We concluded that all of three results are very meaningful in the development of a Hand-held XRF device.

Sensitivity Study of the Flow-through Dynamic Flux Chamber Technique for the Soil NO Emissions

  • Kim Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E3
    • /
    • pp.75-85
    • /
    • 2005
  • A mathematical sensitivity analysis of the flow-through dynamic flux chamber technique, which has been utilized usually for various trace gas flux measurement from soil and water surface, was performed in an effort to provide physical and mathematical understandings of parameters essential for the NO flux calculation. The mass balance equation including chemical reactions was analytically solved for the soil NO flux under the steady state condition. The equilibrium concentration inside the chamber, $C_{eq}$, was found to be determined mainly by the balance between the soil flux and dilution of the gas concentration inside the chamber by introducing the ambient air. Surface deposition NO occurs inside the chamber when the $C_{eq}$ is greater than the ambient NO concentration ($C_{0}$) introducing to the chamber; NO emission from the soil occurs when the $C_{eq}$ is less than the ambient NO concentration. A sensitivity analysis of the significance of the chemical reactions of NO with the reactive species (i.e. $HO_{2},/CH_{3}O_{2},/O_{3}$) on the NO flux from soils was performed. The result of the analysis suggests that the NO flux calculated in the absence of chemical reactions and wall loss could be in error ranges from 40 to $85\%$ to the total flux.