• 제목/요약/키워드: Gas quenching

검색결과 122건 처리시간 0.021초

금속도 공구강의 기계적 성질에 미치는 진공열처리와 염욕열처리 조건의 영향 (Effects of Vacuum Heat Treatment and Salt bath Heat Treatment Conditions on Mechanical Properties of High Speed tool Steel)

  • 김제돈;김경식
    • 열처리공학회지
    • /
    • 제26권1호
    • /
    • pp.7-13
    • /
    • 2013
  • Vacuum heat treatment(indirect heating method) has long exposure time at high temperature and low quenching rate. Contrarily salt bath heat treatment (direct heating method) has short exposure time at high temperature and fast cooling rate. With these different features of processes, mechanical properties such as hardness, tensile strength and impact strength of products show very different results. In this study, Salt bath heat treated products showed higher tensile strength and impact strength than vacuum heat treated products but hardness was not much different. These lower mechanical properties of vacuum heat treated products are due to differences in heat process and secondary hardening with high temperature tempering process. Consequently, It indicates that salt bath heat treatment is better way than vacuum heat treatment for product to have high mechanical properties.

순철분말과 인(P)이 피복된 철분말 소결강의 기계적 성질 (Mechanical Properties of Sintered Steel of Pure Iron Powder and Iron Powder Coated with Phosphorus)

  • 정재우
    • 한국분말재료학회지
    • /
    • 제1권2호
    • /
    • pp.181-189
    • /
    • 1994
  • The compacts of pure and phosphorus-coated iron powder with 0~0.8%C were sintered at $1100^{\circ}C$ for 40 min. in cracked ammonia gas atmosphere. The tensile and impact strengths were measured and the relationship of the results with carbon content, phosphorus, quenching and tempering was investigated. The results obtained can be summarized as follows : (1) The tensile strength of sintered compacts increased slowly with carbon content. Increase in tensile strength by heat treatment was evident especially in the low carbon specimen. The specimen with phosphorus showed higher strength compared to pure iron compacts value. (2) No inflection point of elasticplastic deformation on stress-strain curve was observed in sintered steel. The elastic modulus of sintered steel had the same tendency as tensile strength. But the elongation showed the opposite tendency. (3) The impact absorption energy of sintered steel without addition of phosphorus decreased successively with carbon content and by quenching and tempering. On the contrary, addition of phosphorus resulted in an increase of the impact absorption energy. Quenching and tempering did not affect the impact energy especially in high carbon content. (4) The main fracture source was pore in specimen and the propagation of crack occured mostly along the grain boundaries. But the intragranular fracture was also observed in high carbon, quenched and tempered specimen, and especially in the specimen with phosphorus.

  • PDF

Kinetic Study on the Low-lying Excited States of Ga Atoms in Ar

  • Kuntack Lee;Ju Seon Goo;Ja Kang Ku
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권8호
    • /
    • pp.663-669
    • /
    • 1994
  • Decay kinetics of Ga(5s), Ga(5p) and Ga(4d) atoms in Ar were studied by laser induced fluorescence technique. Theground state gallium atoms in the gas phase were generated by pulsed dc discharge of trimethyl gallium and argon mixtures. Both pulsed discharge and YAG-DYE laser system were controlled by a dual channel pulse generator and the delay time between the end of discharge and laser pulses was set 3.0-6.0 ms. The Ga(5s) and Ga(4d) atoms were generated by single photon excitation from the ground state Ga atoms and radiative lifetimes as well as the total quenching rate constants in Ar were obtained from the pressure dependence of the fluorescence decay rates. The Ga(5p) atoms were populated by a two-photon excitation method and the cascade fluorescence from Ga(5s) atoms were analyzed to extract quenching rate constant of Ga(5p) atoms by Ar in addition to radiative lifetimes of Ga(5p) state. The magnitudes of the quenching rate constants by Ar for the low-lying excited states of Ga atoms are 1.6-3$ {\times}10^{-11}cm^3$ molecul$e^{-1}s^{-1}$, which are much larger than those for alkali, alkaline earth and Group 12 metals. Based on the measured rate constants, kinetic simulations were done to assign state-to-state rate constants.

침탄처리한 SCM420H의 미끄럼 마모 특성에 미치는 침탄 조건의 영향 (Effects of Carburizing Process on Sliding wear Behavior of Carburized SCM420H Steel)

  • 이한영;이규헌
    • Tribology and Lubricants
    • /
    • 제36권1호
    • /
    • pp.18-26
    • /
    • 2020
  • The effects of the carburizing process on the sliding wear behavior of SCM420H steel have been investigated. In particular, the effects of grain boundary corrosion observed in the surface layer after gas carburizing and the effects of hardness of the carburized cases after heat-treatment on the sliding wear properties were examined. Pin specimens carburized by two methods (gas carburizing and vacuum carburizing) were tempered at two temperatures of 180℃ and 400℃ after oil-quenching, respectively. Sliding wear tests were carried out against heattreated SKH51 steel at several sliding speeds using a pin-on-disc type test machine. As results, it can be found that there is no difference in the wear behavior between the pins carburized using two methods. This implies that the grain boundary corrosion that formed in the surface layer after gas carburizing has no effect on the sliding wear behavior of carburized SCM420H steels. Additionally, there is no significant difference in the wear behavior between carburized pins tempered at 400℃ and at 180℃ after oil-quenching, regardless of the carburizing method. This is because carburized pins tempered at 400℃ have a troostite structure, which exhibits higher tribochemical reactivity even though its hardness is lower than that of martensite structure. In this respect, it can be considered that good wear resistance of carburized cases is maintained at least until the effective case depth.

SF6계 혼합가스의 뇌임펄스 절연파괴특성 (Lightning Impulse Breakdown Characteristics of SF6-based Mixture Gases)

  • 서호준;이동희
    • 한국전기전자재료학회논문지
    • /
    • 제18권7호
    • /
    • pp.675-681
    • /
    • 2005
  • $SF_6$ is widely used as gas insulation medium because of having excellent dielectric and arc-quenching properties. However the use of it is getting to be suppressed from the viewpoint of mitigating global warming. For the development of environmentally-benign electric power equipment and system, novel gases or mixture gases are strongly required as the substitute of $SF_6$ gas. In this study the authors constructed an experimental system to investigate insulation properties of the mixed gases composed of negative $gas(SF_6)$ and electron deceleration gases$(N_2\;and\;CO_2)$. Breakdown and prebreakdown characteristics of $SF_6/N_2/CO_2$ mixture gases were investigated using the above mentioned system for different rates and gas pressures.

Star formation in high redshift early-type galaxies

  • Gobat, Raphael;Daddi, Emanuele;Magdis, Georgios;Bournaud, Frederic;Sargent, Mark;Martig, Marie;Jin, Shuowen;Hwang, Ho Seong
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.40.1-40.1
    • /
    • 2017
  • Massive early-type galaxies (ETG) have been spectroscopically confirmed up to z>3 which, together with their ages and abundances at z>1.5, implies that their progenitors must have converted gas into stars on short timescales. The termination of star formation in these galaxies can occur through several channels, but they remain largely conjectural, in part due to the current lack of direct measurements of the amount of residual gas in high redshift ETGs. Here I will present constraints on the star formation rate and dust/gas content of z=1.4-2.5 ETGs. These galaxies, close to their epoch of quenching, contained more than 2 orders of magnitude more dust than their local counterparts, which suggests the presence of substantial amounts of gas and a low star formation efficiency.

  • PDF

비활성 가스 제네레이터의 후방연소기 개발에 관한 연구 (A Study on the Development of After Burner in Inert Gas Generator)

  • 김호근;안국영;김한석;임인권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.909-914
    • /
    • 2001
  • After burner which is main part of inert gas generator(IGG) is studied for the development of IGG. The results of many experimental equations are applied to estimate characteristics of the spray nozzle and evaporation of spray, and selected the optimum design point of after burner. The selected design point of after burner are validated experimentally through the pilot plant of after burner. The flame stability is favorable at design point(150mm), that distance from stabilizer to nozzle. The emission of $NO_x$ and CO is lower than gas turbine combustor which was used in primary combustor.

  • PDF

폭굉제어기에 의한 수소. 아세틸렌 산소 혼합가스의 폭굉제어 (Quenching Effects of Acetylene, Hydrogen-Oxygen Detonation)

  • 김한석;문정기
    • 한국안전학회지
    • /
    • 제6권2호
    • /
    • pp.31-36
    • /
    • 1991
  • Quenching effects of acetylene and hydrogen into oxygen detonation by using detonation arrester [DA]are studied in this paper. The experiments were carried out in cylinderical shock tube. 5m long, 30mm dia., with stolchlometric ratio [SR]of each gas and 10-l20$\mu$ Cell Size of brass and Stainless Steel of DAs were installed in it To clarify arresting ability correlation with initial pressure, Pi, critical thickness, Tct, and shapes of supporting panel of DA are also investigated It is found that ­detonation velocities has most dependency on Pi, it shows notable changes around 0.5kgf/$\textrm{cm}^2$ for hydrogen, 0.15kgf/$\textrm{cm}^2$ for acetylen respectively, ­DA can be safety device able to arrest shock wave of detonation, ­over Tct flame transmission might be only the factor has to be considered, ­acetylene seems to be much more stronger detonation characteristics than hydrogen because of reaction heat.

  • PDF

THE SCIENCE AND TECHNOLOGY OF MECHANICAL ALLOYING

  • Suryanarayana, C.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2000년도 추계학술대회 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.10-10
    • /
    • 2000
  • Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing, and rewelding of powder particles in a high-energy ball mill. This has now become an established commercial technique in producing oxide dispersion strengthened (ODS) nickel- and iron-based materials. The technique of MA is also capable of synthesizing non-equilibrium phases such as supersaturated solid solutions, metastable crystalline and quasicrystalline intermetallic phases, nanostructures, and amorphous alloys. In this respect, the capabilities of MA are similar to those of another important non-equilibrium processing technique, viz, rapid quenching of metallic melts. however, the science of MA is being investigated only during the past ten years or so. The technique of mechanochemistry, on the other hand, has had a long history and the materials produced this way have found a number of technological applications, e.g., in areas such as hydrogen storage materials, heaters, gas absorber, fertilizers. catalysts, cosmetics, and waste management. The present talk will concentrate on the basic mechanisms of formation of non-equilibrium phases by the technique of MA and these aspects will be compared with those of rapid quenching of metallic melts. Additionally, the variety of technological applications of mechanically alloyed products will be highlighted.

  • PDF

열플라즈마를 이용한 탄소 나노 물질의 합성 및 특성에 관한 연구 (A Study on the Synthesis and Characteristics of Carbon Nanomaterials by Thermal Plasma)

  • 강성표;김태희
    • 한국표면공학회지
    • /
    • 제57권3호
    • /
    • pp.155-164
    • /
    • 2024
  • Physical properties of carbon nanomaterials are dependent on their nanostructures and they are modified by diverse synthesis methods. Among them, thermal plasma method stands out for synthesizing carbon nanomaterials by controlling chemical and physical reactions through various design and operating conditions such as plasma torch type, plasma gas composition, power capacity, raw material injection rate, quenching rate, kinds of precursors, and so on. The method enables the production of carbon nanomaterials with various nanostructures and characteristics. The high-energy integration at high-temperature region thermal plasma to the precursor is possible to completely vaporize precursors, and the vaporized materials are rapidly condensed to the nanomaterials due to the rapid quenching rate by sharp temperature gradient. The synthesized nanomaterials are averagely in several nanometers to 100 nm scale. Especially, the thermal plasma was validated to synthesize low-dimensional carbon nanomaterials, carbon nanotubes and graphene, which hold immense promise for future applications.