• 제목/요약/키워드: Gas pressure sintering (GPS)

검색결과 10건 처리시간 0.025초

Wear Behavior of Silicon Nitride Depending on Gas Pressure Sintering Conditions

  • Kim, Sung-Ho;Lee, Soo-Wohn;Park, Yong-Kap
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.193-200
    • /
    • 2000
  • Si$_3$N$_4$powder with 2 wt% $Al_2$O$_3$and 6 wt% $Y_2$O$_3$additives was sintered by the gas pressure sintering (GPS) technique. The unlubricated wear behavior depending on sintering conditions such as sintering temperature, pressure, and sintering time was investigated. When the sintering temperature and time increased, the larger elongated grains were formed and the microstructural heterogeneity increased. When sintering pressure increased, grain growth, however, was impeded. Also, the wear properties depended on microstructure and friction coefficient were related to grain size. Based on the experimental results, the wear properties were associated with initial friction coefficients as well as mechanical properties including fracture toughness and flexural strength.

  • PDF

가스압 소결조건에 따른 질화규소볼의 가공성에 대한 연구 (A Study on Machinability of Silicon Nitride Ball Sintered by Various Gas Pressure Sintering(GPS) Conditions)

  • 이수완;김성호;정용선
    • 한국세라믹학회지
    • /
    • 제35권2호
    • /
    • pp.115-122
    • /
    • 1998
  • The effect of sintering conditions on the sinterability for silicon nitride has been studied by many in-vestigators. However the effect of sintering conditions on the machinability which is the major barrier to the field applications of the ceramic components has not been fully studied. In this study the sintering con-ditions such as temperature gas pressure and time in silicon nitride were varied. The physical and mechan-ical properties of the gas pressure sintered (GPS) silicon nitride were measured. The optimum mi-crostructure of silicon nitride with the excellent machinability was investigated by MFG(magnetic-fluid grinding) technique. An attempt was made to figure out how the mechanical properties influence upon the machinability of silicon nitride ball.

  • PDF

Effects of the Addition of $La_2O_3$ on Mechanical Properties and Machinability of $Si_3N_4$ Ball

  • Sang Yang Lee;Sung Ho Kim;Soo Wohn Lee
    • The Korean Journal of Ceramics
    • /
    • 제6권4호
    • /
    • pp.364-369
    • /
    • 2000
  • Silicon nitride with adding La$_2$O$_3$ was sintered by gas pressure sintering (GPS) technique at $1950^{\circ}C$, in $N_2$ gas at 3 MPa, for 2h. Mechanical properties such as hardness, flexural strength, and fracture toughness were determined as a function of the GPS holding time and the contents of La$_2$O$_3$ in silicon nitride. Also machinability of silicon nitride ball with various GPS holding time and amount of La$_2$O$_3$ was evaluated by magnetic fluid grinding (MFG) method. In this study it was found that machinability was influenced significantly with La$_2$O$_3$ contents. However, the different GPS holding time did not affect the machinability very much.

  • PDF

가스압 소결(GPS) 조건이 질화규소의 기계적 특성에 미치는 영향 (Effects of gas pressure sintering (GPS) conditions on the mechanical properties of silicon nitride)

  • 이수완;김성호;정용선
    • 한국결정성장학회지
    • /
    • 제7권4호
    • /
    • pp.619-625
    • /
    • 1997
  • $Si_3N_4$에 2 wt% $Al_2O_3$와 6 wt% $Y_2O_3$을 첨가한 분말을 가스압소결 방법으로 시편을 제조하였다. 이때 소결시 조건(온도, 압력, 시간) 변화에 대한 기계적 특성 변화를 비교하였다. 이때 나타난 결과에 의하면 $1900^{\circ}C$, 3 MPa에서 1시간 동안 유지시켰을 때 최적의 조건을 갖는다는 것을 보여주었다. 이는 온도를 높여 주거나 유지 시간을 길게 하였을 때 입자 조대화에 의해 기계적 특성이 떨어지는 것을 볼 수 있었다. 그러나 압력을 증가시킬 때에는 미세한 조직을 가지므로 기계적 특성은 좋아짐을 나타내지만 파괴 인성이 떨어지는 것을 볼 수 있었다. 이로 인해 소결시 최적의 조건을 찾는 것이 중요함을 알 수 있었다.

  • PDF

GPS와 HP법으로 제조된 질화규소의 고온 Erosion 특성 (High Temperature Erosion Properties of Silicon Nitride Fabricated by GPS and HP Method)

  • 최현주;안정욱;임대순;박동수
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.304-309
    • /
    • 2000
  • Si$_3$N$_4$-6wt%Y$_2$O$_3$-lwt%Al$_2$O$_3$was prepared by hot pressed and gas pressure sintering to investigate the effect of microstructure on erosion behaviors. Hardness and fracture toughness were measured with prepared specimens to study the high temperature erosion properties. A gas blast type erosion tester was used In examine erosion behavior of the specimens up to 700$^{\circ}C$. In case of GPS silicon nitride, the erosion rate increases up to 500$^{\circ}C$ and decreases over 500$^{\circ}C$. Maximum erosion rate was observed at 300$^{\circ}C$ for HP silicon nitride. The principal factors affecting the high temperature erosive wear of brittle materials are largely dependent on high temperature properties of grain boundaries.

  • PDF

질화규소의 가스압 소결 (GPS) 시간에 따른 마모거동 (Wear Behavior of Silicon Nitride Depending on Gas Pressure Sintering Time)

  • 이수완;김성호
    • 한국재료학회지
    • /
    • 제10권1호
    • /
    • pp.83-89
    • /
    • 2000
  • $Si_3N_4$에 2wt% $Al_2O_3$와 6wt% $Y_2O_3$을 첨가한 분말을 가스압 소결 방법으로 시편을 제조하였다. 이때 소결시 시간변화에 따른 공기 중에서 마모 특성을 비교하였다. 소결 시간에 따른 마모 특성의 변화는 기계적 성질, 즉, 파괴인성 등이 영향을 주는 것으로 나타났다. 소결 시간이 길어지면 큰 elongated 입자의 과잉성장에 따라 곡강도 및 파괴인성이 낮아져 이 결과 마모가 증가되었다. 이때 나타난 결과에 의하면 공기 중에서 질화규소의 마모특성에 영향을 주는 인자는 여러 가지 기계적 특성 중에서 파괴인성 및 곡강도가 미치는 영향이 크게 나타났다.

  • PDF

Lu2O3-SiO2계 소결조제를 포함하는 Silicon Nitride의 소결 특성 및 기계적 거동 (Densification and Mechanical Properties of Silicon Nitride Containing Lu2O3-SiO2 Additives)

  • 이세훈;조춘래;박영조;고재웅;김해두
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.384-389
    • /
    • 2011
  • Gas pressure sintering (GPS) of reaction bonded silicon nitride (RBSN) was performed using $Lu_2O_3-SiO_2$ additive and the properties were compared with those of specimens prepared using high purity $Si_3N_4$ powder. The relative density of RBSN and compacted $Si_3N_4$ powder were 68.9 and 47.1%, and total linear shrinkage after sintering at $1900^{\circ}C$ were 14.8 and 42.9%, respectively. High nitrogen partial pressure (5MPa) was required during sintering at $1900^{\circ}C$ in order to prevent the decomposition of the nitride and to promote the formation of SiC. The relative density and 4-point bending strength of RBSN and $Si_3N_4$ powder compact were 97.7%, 954MPa and 98.2%, 792MPa, respectively, after sintering at $1900^{\circ}C$. The sintered RBSN also showed high fracture toughness of 9.2MPam$^{1/2}$.

A Study on Silicon Nitride Based Ceramic Cutting Tool Materials

  • Park, Dong-Soo
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.78-86
    • /
    • 1995
  • The silicon nitride based ceramic cutting tool materials have been fabricated by gas pressure sintering (GPS) or hot pressing (HP). Their mechanical properties were measured and the effect of the fabrication variables on the properties were examined. Also, effect of adding TiN or TiC particulates on the mechanical properties of the silicon nitride ceramics were investigated. Ceramic cutting tools (ISO 120408) were made of the sintered bodies. Cutting performance test were performed on either conventional or NC lathe. The workpieces were grey cast iron, hardened alloy steel (AISI 4140, HRc>60) and Ni-based superalloy (Inconel 718). The results showed that fabrication variables, namely, sintering temperature and time, exerted a strong influence on the microstincture and mechanical properties of the sintered body, which, however, did not make much difference in wear resistance of the tools. High hardness of the tool containing TiC particulates exhibited good cutting performance. Extensive crater wear was observed on both monolithic and TiN-containing silicon nitride tools after cutting the hardened alloy steel. Inconel 718 was extremely difficult to cut by the current cutting tools.

Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder - Effects on the Sinterability and Mechanical Properties

  • Lee, Sea-Hoon;Cho, Chun-Rae;Park, Young-Jo;Ko, Jae-Woong;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • 한국세라믹학회지
    • /
    • 제50권3호
    • /
    • pp.218-225
    • /
    • 2013
  • The densification behavior and strength of sintered reaction bonded silicon nitrides (SRBSN) that contain $Lu_2O_3-SiO_2$ additives were improved by the addition of fine Si powder. Dense specimens (relative density: 99.5%) were obtained by gas-pressure sintering (GPS) at $1850^{\circ}C$ through the addition of fine Si. In contrast, the densification of conventional specimens did not complete at $1950^{\circ}C$. The fine Si decreased the onset temperature of shrinkage and increased the shrinkage rate because the additive helped the compaction of green bodies and induced the formation of fine $Si_3N_4$ particles after nitridation and sintering at and above $1600^{\circ}C$. The amount of residual $SiO_2$ within the specimens was not strongly affected by adding fine Si powder because most of the $SiO_2$ layer that had formed on the fine Si particles decomposed during nitridation. The maximum strength and fracture toughness of the specimens were 991 MPa and $8.0MPa{\cdot}m^{1/2}$, respectively.

Monochromatic Amber Light Emitting Diode with YAG and CaAlSiN3 Phosphor in Glass for Automotive Applications

  • Lee, Jeong Woo;Cha, Jae Min;Kim, Jinmo;Lee, Hee Chul;Yoon, Chang-Bun
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.71-76
    • /
    • 2019
  • Monochromatic amber phosphor in glasses (PiGs) for automotive LED applications were fabricated with $YAG:Ce^{3+}$, $CaAlSiN_3:Eu^{2+}$ phosphors and Pb-free silicate glass. After synthesis and thickness-thinning process, PiGs were mounted on high-power blue LED to make monochromatic amber LEDs. PiGs were simple mixtures of 566 nm yellow YAG, 615 nm red $CaAlSiN_3:Eu^{2+}$ phosphor and transparent glass frit. The powders were uniaxially pressed and treated again through CIP (cold isostatic pressing) at 200 MPa for 20 min to increase packing density. After conventional thermal treatment at $550^{\circ}C$ for 30 min, PiGs were applied by using GPS (gas pressure sintering) to obtain a fully dense PiG plate. As the phosphor content increased, the density of the sintered body decreased and PiGs containing 30 wt% phosphor had full sintered density. Changes in photoluminescence spectra and color coordination were investigated by varying the ratio of $YAG/CaAlSiN_3$ and the thickness of the plates. Considering the optical spectrum and color coordinates, PiG plates with $240{\mu}m$ thickness showed a color purity of 98% and a wavelength of about 605 nm. Plates exhibit suitable optical characteristics as amber light-converting material for automotive LED applications.