• Title/Summary/Keyword: Gas porosity

Search Result 313, Processing Time 0.285 seconds

Characteristics of $CO_2$ or Nd:YAG Laser Welded 600MPa Grade TRIP Steel (600MPa급 TRIP강의 $CO_2$ 및 Nd:YAG 레이저 용접부의 특성)

  • Han, Tae-Kyo;Kim, Seung-Jun;Lee, Bong-Keun;Kim, Dae-Up;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.56-63
    • /
    • 2006
  • The characteristics of $CO_2$ or Nd:YAG laser welded 600MPa ade TRIP steel was investigated. He or Ar gas was used as a shield gas in case of $CO_2$ laser welding, but the shield gas was not used in case of Nd:YAG laser welding. Bead on plate welding was performed with various welding conditions. Defects in the joints of both welding type occurred at 1.8m/min but were not observed over the welding speed of 2.1m/min in case of Nd:YAG laser welding. However, porosity occurred in $CO_2$ laser welding and the tendency of decreasing with the increase of welding speed. The hardness was the highest at heat affected zone near fusion zone as well as at the fusion zone and decreased on approaching the base metal. In a perpendicular tensile test to the weld line, all specimens that have been welded at optimum conditions were fractured at the base metal, and the tensile properties showed the rather higher than those of raw material. In a parallel tensile test, the strength of the joints was higher than that of the base metal. Elongation was found to be lower than that of the raw material. Forming height by Erichsen test and elongation were deeply related with the ratio of base metal/weld metal and the maximum hardness of the weld metal. Also porosity induced to decrease the strength and the elongation. The maximum formability was recorded at approximately 80% as compared with that of the raw material with the optimum condition.

Property changes of GDLs and water behaviors in PEFCs (고분자전해질 연료전지 체결조건에서 기체확산층의 특성변화 및 물거동 확인)

  • Park, Gu-Gon;Lim, Nam-Yun;Ahn, Eun-Jin;Park, Jin-Soo;Yoon, Young-Gi;Lee, Won-Yong;Lim, Tae-Won;Kim, Chan-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.313-315
    • /
    • 2006
  • Proper water management is important to achieve high performance and durability of Polymer electrolyte fuel cell (PEFC). Among various stack components, gas diffusion layer (GDL) is considered as a core part to determine the gas and water transportation in a cell. To optimize the water management, the changes of properties as well as basic properties of GDLs were investigated before and after clamping of colls. Thickness, electric conductivity, porosity, hydroppobicity etc. were characterized by the same criteria. The amount of residual water after cell operation also was compared by direct measuring of weight. Based on the amount of residual water the endurance on the freeze condition was evaluated.

  • PDF

Fabrication and Ammonia Gas Sensing Properties of Chemiresistor Sensor Based on Porous Tungsten Oxide Wire-like Nanostructure

  • Vuong, Nguyen Minh;Kim, Do-Jin;Hieu, Hoang Nhat
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.25.2-25.2
    • /
    • 2011
  • The tungsten oxide wire-like nanostructure is fabricated by deposition and thermal oxidation of tungsten metal on porous single wall carbon nanotubes (SWNTs). The morphology and crystalline quality of materials are investigated by SEM, TEM, XRD and Raman analysis. The results prove that $WO_3$ wire-like nanostructure fabricated on SWNTs show highly porous structures. Exposure of the sensors to NH3 gas in the temperature range of 150~300$^{\circ}C$ resulted in the highest sensitivity at $250^{\circ}C$ with quite rapid response and recovery time. Response time as a function of test concentrations and NH3 gas sensing mechanism is reported and discussed.

  • PDF

A Study on the Reactor Design of Solid-Solid-Gas Chemical Heat Pump System (고체-고체-기체 화학 열펌프 시스템의 반응기 설계에 관한 연구)

  • Kim, S.J.;Lee, T.H.;Neveu, P.;Choi, H.K.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.406-416
    • /
    • 1994
  • In this study the reactor design procedure and method of solid-solid-gas chemical heat pump system using STELF technology were investigated. For manufacturing IMPEX block which is the kernel of reactor, proper salt pair should be selected, and equilibrium temperature drop and COP should be examined for selected salt pair. Moreover, apparent density, residual porosity, and graphite ratio should be calculated to give minimum block volume and mass, and maximum energy density without causing heat and mass transfer problems. Since heat exchange area can be changed with operating condition, reactor diameter, length, and stainless steel thickness should be decided for desired specifications. These procedure and method were applied to the case study of 6kW cold production and 8 hours storage capacity reactor.

  • PDF

A study on the Al cementation and formation of corrosion-resisting, hardening layer on the steel surface by the arc spray method (아크 용사법에 의한 강재표면에의 Aluminum침수 및 내식, 경화성 피막형성에 관한 연구)

  • 김영식;배차헌;오재환;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.64-77
    • /
    • 1989
  • In this study, the experiments were carried out for the purpose of establishment of aluminium cementation to steel surface by diffusible heat treatment after making the coated film onto the substrate by arc spray method. Also, the microstructure and mechanical properties of the cementation layer produced by this study were inspected for various heat treatment and spraying conditions. Main results obtained are as follow ; 1. The coating film characteristics which have excellent errosion-resistance, high temperature oxidation-resistance are obtained by aluminium penetration heat treatment after making the sprayed aluminum coating film onto the steel substrate. 2. Aluminium diffusion penetration takes place at higher temperature than 660.deg.C, and the more heat treatment time and the higher heat treatment temperature adopted, the deeper diffusion layer obtained. 3. Insert gas arc spraying using argon gas as the carrier gas higher improvement of mechanical property than that of compressed air environment. 4. The coating film characteristics appeared to be improvement of adhesive property, porosity plugging effect by heat treatment in air environment.

  • PDF

Well Data Interpretation using Software Developed for Estimation of Petrophysical Properties in Gas Hydrate Bearing Sediments in Ulleung Basin, Offshore Korea (가스하이드레이트 퇴적층 물성 추정 소프트웨어를 이용한 울릉분지 시추공 자료 해석)

  • Seo, Kwang-Won;Lim, Jong-Se
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.55-67
    • /
    • 2012
  • For the development of gas hydrate as new future energy resources, the drilling was carried out at the five locations where have high potential as gas hydrate bearing sediments in Ulleung basin, offshore Korea in 2007. Well log data were obtained from all wells and core data were procured from 3 wells, UBGH1-04, UBGH1-09 and UBGH1-10. In this study, user-friendly software, "KMU GH Logs 2010", is developed and this software is based on the estimation methods developed in previous study for gas hydrate bearing sediments and the properties estimated from UBGH1-04, UBGH1-09 and UBGH1-10. Petrophysical properties in un-cored wells, UBGH1-01 and UBGH1-14, are also estimated by using well log data. Porosity is estimated by density log and gas hydrate saturation is calculated by sonic log and resistivity log. Sedimentary facies are estimated by applying the linear discriminant analysis using both well log and sedimentary facies data from core analysis. It is confirmed that DITM facies and MSS facies appeared signs of gas hydrate disassociation are able to be distinguished by the method.

Fabrication of Fe-Cr-Al Porous Metal with Sintering Temperature and Times (소결 온도와 유지 시간에 따른 Fe-Cr-Al 다공성 금속의 제조)

  • Koo, Bon-Uk;Lee, Su-In;Park, Dahee;Yun, Jung-Yeul;Kim, Byoung-Kee
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.100-104
    • /
    • 2015
  • The porous metals are known as relatively excellent characteristic such as large surface area, light, lower heat capacity, high toughness and permeability. The Fe-Cr-Al alloys have high corrosion resistance, heat resistance and chemical stability for high temperature applications. And then many researches are developed the Fe-Cr-Al porous metals for exhaust gas filter, hydrogen reformer catalyst support and chemical filter. In this study, the Fe-Cr-Al porous metals are developed with Fe-22Cr-6Al(wt) powder using powder compaction method. The mean size of Fe-22Cr-6Al(wt) powders is about $42.69{\mu}m$. In order to control pore size and porosity, Fe-Cr-Al powders are sintered at $1200{\sim}1450^{\circ}C$ and different sintering maintenance as 1~4 hours. The powders are pressed on disk shapes of 3 mm thickness using uniaxial press machine and sintered in high vacuum condition. The pore properties are evaluated using capillary flow porometer. As sintering temperature increased, relative density is increased from 73% to 96% and porosity, pore size are decreased from 27 to 3.3%, from 3.1 to $1.8{\mu}m$ respectively. When the sintering time is increased, the relative density is also increased from 76.5% to 84.7% and porosity, pore size are decreased from 23.5% to 15.3%, from 2.7 to $2.08{\mu}m$ respectively.

Highly Porous Tungsten Oxide Nanowires As Resistive Sensor for Reducing Gases

  • Nguyen, Minh Vuong;Hoang, Nhat Hieu;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • Gas sensor properties of $WO_3$ nanowire structures have been studied. The sensing layer was prepared by deposition of tungsten metal on porous single wall carbon nanotubes followed by thermal oxidation. The morphology and crystalline quality of $WO_3$ material was investigated by SEM, TEM, XRD and Raman analysis. A highly porous $WO_3$ nanowire structure with a mean diameter of 82 nm was obtained. Response to CO, $NH_3$ and $H_2$ gases diluted in air were investigated in the temperature range of $100{\sim}340^{\circ}C$ The sensor exhibited low response to CO gas and quite high response to $NH_3$ and $H_2$ gases. The highest sensitivity was observed at $250^{\circ}C$ for $NH_3$ and $300^{\circ}C$ for $H_2$. The effect of the diameters of $WO_3$ nanowires on the sensor performance was also studied. The $WO_3$ nanowires sensor with diameter of 40 nm showed quite high sensitivity, fast response and recovery times to $H_2$ diluted in dry air. The sensitivity as a function of detecting gas concentrations and gas sensing mechanism was discussed. The effect of dilution carrier gases, dry air and nitrogen, was examined.

  • PDF

Petrophysical Joint Inversion of Seismic and Electromagnetic Data (탄성파 탐사자료와 전자탐사자료를 이용한 저류층 물성 동시복합역산)

  • Yu, Jeongmin;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • Seismic inversion is a high-resolution tool to delineate the subsurface structures which may contain oil or gas. On the other hand, marine controlled-source electromagnetic (mCSEM) inversion can be a direct tool to indicate hydrocarbon. Thus, the joint inversion using both EM and seismic data together not only reduces the uncertainties but also takes advantage of both data simultaneously. In this paper, we have developed a simultaneous joint inversion approach for the direct estimation of reservoir petrophysical parameters, by linking electromagnetic and seismic data through rock physics model. A cross-gradient constraint is used to enhance the resolution of the inversion image and the maximum likelihood principle is applied to the relative weighting factor which controls the balance between two disparate data. By applying the developed algorithm to the synthetic model simulating the simplified gas field, we could confirm that the high-resolution images of petrophysical parameters can be obtained. However, from the other test using the synthetic model simulating an anticline reservoir, we noticed that the joint inversion produced different images depending on the model constraint used. Therefore, we modified the algorithm which has different model weighting matrix depending on the type of model parameters. Smoothness constraint and Marquardt-Levenberg constraint were applied to the water-saturation and porosity, respectively. When the improved algorithm is applied to the anticline model again, reliable porosity and water-saturation of reservoir were obtained. The inversion results indicate that the developed joint inversion algorithm can be contributed to the calculation of the accurate oil and gas reserves directly.

Experiments for Pressure Drop of Scrubbing Layer in a Scrubber System (스크러버 내 충진층에서의 압력강하 특성에 관한 실험적 연구)

  • Yong-Shik Han;Kyu Hyung Do;Kyungyul Chung;Byungil Choi;Hwalong You;Changhyun Kim;Minchang Kim;Taehoon Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.186-192
    • /
    • 2023
  • According to the regulation on the pollution of the marine environment, SOx emission from ships has to be reduced. A SOx scrubbing system installed in a funnel of a ship is considered in order to reduce SOx emission. A scrubbing layer with a porous material is present in the funnel to increase the contact area between exhaust gas and water. In this study, experiments on the pressure drop characteristics in the scrubbing layer are conducted to investigate the effect of the scrubber on the engine load. The pressure drop according to flow rate of air instead of exhaust gas was measured for fillers such as sphere, pall ring and saddle in the scrubbing layer. First of all, porosity is experimentally measured for the three types of filler and it is confirmed that the porosity of the saddle-type filler was the largest. The pressure drop according to the change in air flow rate was measured for the three types of fillers in the scrubbing layer. As a result, the pressure drop was the smallest in the scrubbing layer with the saddle-type filler which has the largest porosity. In addition, the effect of spraying water flowing counter flow against air flow is experimentally examined. It is known that the pressure drop is increased because the air flow space is reduced when water is sprayed. In the case of the saddle, the pressure drop is about 1.5 to 2 times greater than that when only air flows at the optimum exhaust gas-water injection ratio.