• Title/Summary/Keyword: Gas permeability

Search Result 534, Processing Time 0.023 seconds

Separation of Hydrogen-Nitrogen Gas Mixture by PTMSP-Silica-PEI Composite Membranes

  • Lee, Hyun-Kyung;Kang, Tae-Beom
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.144-147
    • /
    • 2004
  • Organosilicon polymers have long paid attention as functional polymers [1,2]. Among others, poly- (1-trimethylsilyl-1-propyne) [PTMSP] is a polymer, which forms a gas separating membrane with extraordinary high gas permeability. In particular, composite membranes that constituted two different matrices (inorganic and organic) have been recently developed in order to improve the permeation characteristics.(omitted)

  • PDF

Gas Permeability through Mixed Matrix Membrane of Poly(dimethylsiloxane) with Aluminosilicate Hollow Nanoparticles (알루미노규산염 나노입자를 이용한 Poly(dimethylsiloxane) 복합매질 분리막의 기체투과 특성)

  • Fang, Xiaoyi;Jung, Bumsuk
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.51-60
    • /
    • 2019
  • In order to improve gas separation properties of polymeric membranes which have been widely applied in the industry field, aluminosilicate hollow nanoparticles named as allophanes were synthesized by sol-gel method and formulated in Poly(dimethylsiloxane) (PDMS) matrix to investigate the gas separation properties of PDMS membrane. Transmission electron microscope (TEM), Energy dispersive X-ray analysis (EDX), X-ray diffractometer (XRD), Surface area and pore size analyzer (BET) and Fourier transform infrared spectrophotometer (FTIR) were carried out to characterize the synthetic allophanes. Then the PDMS mixed matrix membranes were prepared by adding different volume fraction of allophanes. To examine the effect of allophanes addition in PDMS matrix using unmodified allophane and modified ones, the gas permeation experiments were performed using oxygen, nitrogen, methane and carbon dioxide. As the volume fraction of modified allophane increased up to 4.05 Vol% the permeability of four test gases through PDMS mixed matrix membranes increased. Also, the selectivity of $O_2/N_2$ and $CO_2/CH_4$ increased with the contents of the modified allophane. Further improvement of gas separation properties of PDMS mixed matrix membranes containing higher volume percent of allophanes can be expected as long as well dispersion of allophanes in PDMS matrix can be achieved for better PDMS membranes.

Gas Permeability and Blood Compatibility in Polydimethylsiloxane Polypropylene Combined Membrane (Polydimethylsiloxane 가공 Polypropylene막에서의 기체투과 및 혈액적합성)

  • Kim, K.B.;Lee, S.C.;Jheong, G.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.233-234
    • /
    • 1998
  • The purpose of this paper is the evaluation of a permeability and blood compatibility for silicone/polypropylene combined membrane. Despite the overall good performances of polypropylene membrane, its long-lasting usage for artificial lung has been limited by serum leakage. In order to overcome this problem, we have newly fabricated polydimethylsiloxane(silicone)/polypropylene combined membrane(SPCM). SPCM has been proved to be serum leakage free in hours experimental. It has shown good long-lasting gas transfer and durability features.

  • PDF

A Study on the Manufacturing of Porous Membrane for Separation of Gas Mixture by Al Anodizing Method (Al장극산화법에 의한 반휴분이용 다공성 격영의 제조에 관한 연구)

  • 윤은열;라경용
    • Journal of the Korean institute of surface engineering
    • /
    • v.15 no.2
    • /
    • pp.69-76
    • /
    • 1982
  • With a view to manufacturing membranes for separation of gas mixtures, Al foils were anodized in a 2% oxalic-acid electrolyte at 40V and 80V. When anodizing was completed and Barrier layer existed at the extreme back site of the foil, the anodized foil was made to react with only electrolyte, with switching off the electric power. When the size and density of pores were changed through voltage change, the membr-anes did not show large difference in the permeability. Reacting with electrolyte, the existing Barrier layer turns into porous layer. During this process, several small pores grow from one relatively large pore, getting to the back site. The number and size of the small pores getting to the back surface increase as time passing. This change of Barrier layer into porous layer is thought to be directly related to the permeability change of the membranes. The selectivity of an anodized Al membrane was not related to the voltage change, and was high, being similar to the theoretical selctivity of metallic membranes, according to my observation.

  • PDF

Preparation and Permeation Characteristics of Alumina Composite Membranes by CVD and Evaporation-Oxidation Process (화학증착 및 증발-산화법에 의한 알루미나 복합분리막의 제조 및 투과특성)

  • 안상옥;최두진;현상훈;정형진;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.678-684
    • /
    • 1993
  • Alumina composite membranes were prepared by chemical vapor deposition and evaporation-oxidation process. For CVD process, deposition was carried out using aluminum-tri-isopropoxide at 35$0^{\circ}C$, 2 torr by heterogeneous reaction, and for evaporation-oxidation process, alumina composite membranes were prepared by evaporation of aluminum and dry oxidation at 80$0^{\circ}C$. As deposition time increases, water flux and N2 gas permeability of the composite membranes prepared by both processes were reduced. Applying gas permeation model, permeability and cracking possibility of top layer were evaluated.

  • PDF

A Study on the Performance Analysis of Mobile Fuel Cell (모바일용 연료전지의 성능해석에 관한 연구)

  • Kim, Kwang-Soo;Choi, Jong-Pil;Jeong, Chang-Ryeol;Jang, Jae-Hyeok;Jeon, Byeong-Hee;Kim, Byeong-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.115-121
    • /
    • 2008
  • In this paper, a three-dimensional computational fluid dynamic model of a proton exchange membrane fuel cell(PEMFC) with serpentine flow channel is presented. A steady state, single phase and isothermal numerical model has been established to investigate the influence of the GDL (Gas Diffusion Layer) parameters. The GDL is made of a porous material such as carbon cloth, carbon paper or metal wire mesh. For the simplicity, the GDL is modeled as a block of material having numerous pathways through which gaseous reactants and liquid water can pass. The porosity, permeability and thickness of the GDL, which are employed in the model parameters significantly affect the PEMFC performance at the high current region.

Insights into the significance of membrane structure and concentration polarization on the performance of gas separation membrane permeators: Mathematical modeling approach

  • Dehkordi, Javad Aminian;Hosseini, Seyed Saeid;Kundu, Prodip K.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.333-346
    • /
    • 2018
  • This study presents a mathematical modeling approach for developing models based on non-ideal conditions related to the membrane structure including porous supporting layer and deformation under pressure. Comparison of the findings with experimental data reveal the importance of considering the resistance in porous supporting layer though the effect of concentration polarization in the permeate stream could be neglected. Investigations on deformation of fibers under pressure ascertain that at larger fiber inner radius to outer radius ratios, increasing driving force may lead to an initial increase in permeability. After that, the effects of deformation dominates and thus permeability may be decreased.

An Experiemtnal Study on the Air Permeability Effect on Concrete Carbonation (콘크리트의 중성화에 영향을 미치는 투기성에 관한 실험적 연구)

  • 권영진;김무한;강석표;유재강
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.277-284
    • /
    • 2001
  • Hardened concrete contains pores of varying types and sizes, and therefore the transport of air through concrete can be considered. The rate of permeability will not only depends on the continuity of pores, but also on the moisture contents in concrete and finishing material on concrete. Also it knows that the durability of reinforced concrete structure is concerned with air permeability which effects on the carbonation occurred by invasion of CO2 gas and the corrosion of steel bar occurred by O$_2$. In this paper, the effects of curing conditions and finishing materials on carbonation and air permeability are investigated according to the accelerated carbonation test. As results, carbonation velocity and air permeability are effected by curing conditions and finishing materials, and air permeability coefficient is effected by moisture content. Also the relationship between carbonation velocity coefficients and air permeability coefficients has been quite well established.

Organic/inorganic Hybrid Electrolytes for the Application of Direct Methanol Fuel Cell (DMFC) - Preparation and Properties of Sulfonated SEBS (SSEBS)-clay Hybrid Membranes - (직접메탄올 연료전지용 유무기 하이브리드 전해질 - 술폰화된 SEBS (SSEBS)-clay 하이브리드 막의 제조 및 물성 -)

  • Nam Sang Yong;Park Byung-Kil;Kong Sung-Ho;Kim Young Jin
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.165-174
    • /
    • 2005
  • Sulfonated poly(styrene-ethylene-butadiene-styrene) (SSEBS)-clay hybrid membranes were prepared by solution method. In the preparation of hybrid membrane, the amount of clay content was fixed to 5 phr and montmorillonite (MMT) was fully exfoliated by the SEBS and it was confirmed by X-ray diffraction method. D-spacing of the characteristic peak from MMT plate in WAXD was fully diminished. Gas permeability, mechanical properties and thermal properties of the SSEBS-clay hybrid membranes were investigated. Gas permeability through the SSEBS-clay hybrid membranes decreased due to increased tortuosity made by exfoliation of clay in SEBS.