• Title/Summary/Keyword: Gas penetration

Search Result 330, Processing Time 0.027 seconds

Gas Response and Electrical Properties of Organic Ultra-thin Films (유기 박막의 전기적 특성 및 가스 반응 특성)

  • 박재철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.820-825
    • /
    • 1998
  • We deposited stearic acid LB films by using Langmuir-Blodgett (LB)method and investigated anisotropy electrical conduction characteristics by I-V measurement for horizontal direction and vertical direction. Also, we measured gad response between deposited LB films and organic gas for various temperature(0~8$0^{\circ}C$) by 9MHz At-cut quartz crystal microbalance. The LB films have electrical conduction characteristics such as semiconducting and insulating properties. The is, the conductivity of LB films for the horizontal and vertical direction is about 10\ulcornerS/cm and 10\ulcorners/cm, respectively. the frequency shift of stearic acid LB films for the organic gases depended on the mass change by the surface adsorption and the inner penetration to the sensing films. The resonant frequency shift of the quartz crystal microbalance for temperature properties of LB films is thought to the effect of the rearrangement or the damage pf LB films above the melting point and the mobility increasement of the organic gas by the temperature rising.

  • PDF

The Study on Eddy Current Characteristic for Surface Defect of Gas Turbine Rotor Material (가스터빈 로터 재질에 따른 표면결함 와전류 특성연구)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.63-67
    • /
    • 2010
  • This paper introduces the eddy current signal characteristic of magnetic and non-magnetic gas turbine rotor. In the past, Magnetic particle inspection method was used in magnetic material for qualitative defect evaluation and the ultrasonic test method was used for quantitative evaluation. Nowadays, eddy current method is used in magnetic gas turbine rotor inspection due to advanced sensor design technology. We are studying on the magnetic gas turbine rotor by using eddy current method. We prepared diverse depth specimens made by magnetic and non-magnetic materials. We select optimum frequency according to material standard penetration data and experiment results. We got the signal on magnetic and non-magnetic material about 0.2 mm, 05 mm, 1.0 mm, 1.5 mm 2.0 mm and 2.5 mm depth defects and compare the signal amplitude and signal trend according to defect depth and frequency. The results show that signal amplitudes of magnetic are bigger than non-magnetic material and the trends are similar on every defect depth and frequency. The detection and resolution capabilities of eddy current are more effective in magnetic material than in non-magnetic materials. So, the eddy current method is effective inspection method on magnetic gas turbine rotor. And it has the merits of time saving and simple procedure by elimination of the ultrasonic inspection in traditional inspection method.

Analysis of Degradation of Durability of the GDL with Various MPL Penetration Levels (MPL 침투깊이에 따른 GDL 내구성능 저하 특성 분석에 관한 연구)

  • Park, Jaeman;Cho, Junhyun;Ha, Taehun;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.77.1-77.1
    • /
    • 2010
  • Durability problems of gas diffusion layer(GDL) is one of the important issues for accomplishing commercialization of proton exchange membrane fuel cell(PEMFC). GDL is strongly related to the performance of PEMFC because one of the main function of GDL is to work as a path of fuel, air and water. When the GDL is degraded, it causes water balance problems such as the flooding phenomenon. Thus, investigating the durability characteristics of the GDL is important and understanding the GDL degradation process is needed. In this study, the GDLs are degraded by carbon corrosion stress method which is the electrochemical degradation mode. To determine the effects of carbon corrosion of the GDL, 1.45 V of potential is imposed for 96 hours. In this manner, in the previous research, the structure between the substrate and the MPL is weaken. Further investigations are needed to clarify this phenomenon. Therefore, in this study, the carbon corrosion stress method is carried out with GDLs which have various MPL penetration levels and the effects of the MPL penetration level on the characteristics change of the GDL are analyzed. The changes in characteristics are measured with various properties of GDL such as weight, thickness and static contact angle. The degraded GDL shows loss of their properties.

  • PDF

Experimental Study on the Spray Characteristics of the Diesel Single Hole Type Nozzle (디젤단공노즐의 분무특성에 관한 실험적 연구)

  • 안병규;송규근;윤소남;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.764-767
    • /
    • 2003
  • The characteristics of diesel spray have much effect on the engine performances such as power. fuel consumption rate and emissions. Therefore, the measurement of fuel spray characteristics is very important for the improvement of heat engine. The factors which control diesel spray characteristics are injection pressure, ambient temperature and density etc. Spray behaviors are visualized by using the high speed video camera and spray angle, spray penetration are measured. Experimental equations of spray penetration and spray angle were derived by using the experimental results. 1) Ambient temperature and density influence on the characteristics of diesel spray. 2) Experimental equation of spray penetration is expressed as follows 0<t< $t_{b}$ ; $S_1$=11.628$\Delta$ $P^{0.485}$ $\rho$$_{a}$ $^{-0.478}$ $t^{1.337}$, $t_{b}$ <t; $S_2$=7.457$\Delta$ $P^{0.523}$ $\rho$$_{a}$ $^{-0.382}$ $t^{0.548}$ 3) Experimental equation of spray Angie is expressed as follows $T_{a}$ =293K; Tan($\theta$/2)=059($\rho$$_{a}$ / $\rho$$_{f}$ )$^{0.437}$, $T_{a}$ =473K; Tan($\theta$/2)=0588($\rho$$_{a}$ / $\rho$$_{f}$ )$^{0.404}$_{f}$ )$^{0.404}$

  • PDF

Organic Gas Response Characteristics for Temperature of Fatty Acid LB Films (지방산 LB막의 온도에 대한 유기가스 반응특성)

  • 이준호;진철남;장정수;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.353-356
    • /
    • 1999
  • The electrical characteristics of fatty acid LB films were investigated to develop the gas sensor using Langmuir-Blodgett(LB) films which have high ordered orientation and ordering structure. The deposition status of fatty acid LB films were verified by the measurements of UV absorbance. The conductivity of fatty acid LB films for horizontal direction at room temperature was about $10^8[S/cm]$,/TEX>, which was correspond to semiconductor material. The activation energy for fatty acid LB films with respect to variation of temperature was about l.O[eV]. The response characteristics for organic gas were confirmed by measuring the response time, recovery time, and reproducibility of the fatty acid LB films to each organic gas. Also, the penetration and adsorption behavior of gas molecule were confirmed through the organic gas response characteristics of fatty acid LB films with respect to temperature.

  • PDF

Percussive Drilling Application of a Tubular Reciprocating Translational Motion Permanent Magnet Synchronous Motor

  • Zhang, Shujun;Norum, Lars E.;Nilssen, Robert;Lorenz, Robert D.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.419-424
    • /
    • 2012
  • This paper presents a tubular reciprocating translational motion permanent magnet synchronous motor for percussive drilling applications for offshore oil & gas industry. The motor model and rock model are built up by doing force analysis of the motor and analyzing the physical procesof impact. The optimization of input voltage waveforms to maximize the rate of penetration is done by simulations. The simulation results show that the motor can be utilized in percussive drilling applications and achieve a very large impact force. Simulation results for optimization also show that second harmonic input voltage produces a higher rate of penetration than the sine wave and fourth harmonic input voltages.

Spray characteristics of impinging sprays introduced into the strongly convective flow (수직 간섭된 램공기 대류에 의한 충돌 분무의 미립화 촉진에 관한 연구)

  • Lee Sang-Seung;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.384-394
    • /
    • 2005
  • Important characteristics of impinging sprays intersected by a strongly convective gaseous cross flows were experimentally investigated. The breakup processes due to different Weber and Reynolds numbers of liquid and gas streams were visually examined with quantitative measurements of breakup lengths, penetration heights, and droplet sizes. Snapshot images and spay data evidenced that, at lower jet Reynolds number the breakup processes portrays the atomization profiles similar to typical column breakup of single orifice jet. At higher jet Reynolds numbers, disintegration of jet stream is significantly expedited by strong momentum transported from strongly convective gaseous stream. The breakup length and penetration height decreased as the convective flow increase. From the bottom the wall up, the SMD measured the centerline increase. The maximum SMD appeared the top of the SMD distribution

  • PDF

Spray characteristics of swirl sprays introduced into the strongly convective flow (수직 간섭된 램공기 대류에 의한 스월 분무의 미립화 촉진에 관한 연구)

  • Lee Sang-Seung;Yoon Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.395-406
    • /
    • 2005
  • Important characteristics of swirl sprays intersected by a strongly convective gaseous cross flows were experimentally investigated. The breakup processes due to different Weber and Reynolds numbers of liquid and gas streams were visually examined with quantitative measurements of breakup lengths, penetration heights, and droplet sizes. Snapshot images and spray data evidenced that, at lower jet Reynolds number the breakup processes portrays the atomization profiles similar to typical column breakup of single orifice jet. At higher jet Reynolds numbers, disintegration of jet stream is significantly expedited by strong momentum transported from strongly convective gaseous stream. The breakup length and penetration height decreased as the convective flow increase. From the bottom the wall up, the SMD measured the centerline first increases and then decreases before again increasing.

  • PDF

Crack Opening Behavior of Perpetrated Crack Under Fatigue Load

  • Nam, Ki-Woo;Ahn, Seok-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.24-31
    • /
    • 2002
  • The leak-before-break (LBB) behaviors of a structural component under high and low fatigue loads are an important problem in nuclear power plants, liquid nitrogen gas tankers and chemical plants. This paper is an experimental study to evaluate the crack opening behavior after penetration for plate and pipe specimens. Crack opening displacement after penetration under low fatigue load could be satisfactorily determined at the center of the plate thickness regardless of the specimen size. In the case of high fatigue load, it is shown that the crack opening displacement at the center of a penetrated crack carl be derived using the gross stress, $\sigma$/sug G/, and the front surface crack length, a$\_$s/, together with the back surface crack length, a$\_$b/.

Service Life Assessment and Restrain Methods of Carbonation Attack on PC Outer Wall of LNG Storage Tanks (탄산염해에 대한 LNG 저장탱크 PC 외부벽체의 수명평가 및 억제방안)

  • Lee, Seung-Rim;Song, Il-Hyun;Kim, Han Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • The objective of this paper is to assess the service life and retrain methods of specimens, which were subjected to carbonation attack, obtained from mix proportion of Sam-cheok LNG storage tank under construction. As the results, accelerated-carbonation penetration depths of 7, 28, 56 ages indicated 4.45, 9.19, 13.37mm, and even considering for cover depths of steel of LNG storage tank under real operation, it was enough. In addition, with carbonation velocity coefficient calculated by carbonation penetration depths, the service life to design cover depth(70, 80, 90, 100mm) of PC outer tank of LNG storage tank was 779, 1017, 1287, 1589 years and 466, 609, 771, 951 years, respectively, considering the $CO_2$ concentration in air which account for the 0.03% and 0.05%. Also, the restrain methods to carbonation attack were feasible through controlling the factors affecting the changes of hydration products such as $Ca(OH)_2$, ion composition in pore solution and matter mobility of organization structures within hardened concrete.