• Title/Summary/Keyword: Gas mixing

Search Result 1,054, Processing Time 0.033 seconds

The Luminous Efficiency Improvement of Color AC Plasma Display Panel by adding Ar Gas (Ar Gas 첨가에 따른 칼라 플라즈마 디스플레이 패널의 효율 향상)

  • Shin, Jae-Hwa;Choi, Hoon-Young;Lee, Seok-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.132-136
    • /
    • 2002
  • In this study, we analyzed the luminous efficiencies of Ne-Xe-Ar and He-Ne-Xe-Ar mixing gas in compared with those of Ne-Xe and He-Ne-Xe mixing gas to improve luminous efficiency by adding a small amount of Ar gas. At the Xe 4%, the brightness of Ne-Xe and He-Ne-Xe mixing gas is higher than others. As the Xe % increases, power consumption decreases. Thus, in the Ne-Xe and He-Ne-Xe mixing gas of Xe 4%, we obtained maxium luminous efficiency. The Ar concentration is varied from 0.1% to 0.7% in this study. The luminous efficiency of the Ne-Xe(4%) mixing gas is improved to 1.16 and 1.13 lm/W by adding an Ar concentration of 0.4% and 0.5%, respectively. The luminous efficiency of the He-Ne-Xe(4%) (He : Ne = 7 : 3) mixing gas is considerably improved by adding an Ar concentration of above 0.3%. The maximum luminous efficiency of this mixing gas is 1.38 lm/W at the condition of adding an Ar concentration of 0.5%.

A Study on the GMA Welding Characteristics of Al5083-O Aluminum Alloy According to the Shield Gas Mixing Ratio and Heat Input (Al5083-O 알루미늄합금의 보호가스 혼합비율 및 입열량에 따른 GMA용접 특성에 관한 연구)

  • 정재강;양훈승;이동길
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.65-70
    • /
    • 2002
  • This study was to evaluate GMA welding characteristics of the A15083-O aluminum alloy according to the shield gas mixing ratio and heat input change. The GMA welding of the base metal was carried out with flour different shield gas mixing ratios(Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%). Regarding the if1uence on the bead shape of the shield gas mixing ratio and heat input, the bead width was greatest in Ar100%+He0% mixture. But the penetration depth and area were greatest in Ar33%+He67% mixture considering that the lower Ax gas ratio, the higher bead depth and area. Also, dilution was also best in the shield gas mixing ratio. The size and number of deflects were least in Ar33%+He67% mixture. Higher He gas ratio resulted in less deflects detected by the radiographic inspection.

Characteristics of Flame Stabilization of the LFG Mixing Gas (LFG 혼합연료의 화염 안정화 특성)

  • Lee, Chang-Eon;Hwang, Cheol-Hong;Kim, Seon-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.328-335
    • /
    • 2002
  • In this study, experiments were performed to investigate the characteristics of flame stabilization of the LFG mixing gas. LFG has merely half heating value compared with liquified natural gas but can be greatly utilized as a commercial fuel. In order to use LFG in practical combustors, Webbe Index and heating value of LFG mixing gas were adjusted by mixing LPG with LFG. The comparisons were conducted between CH$_4$and LFG mixing gas for searching the region of flame stabilization based upon the flame blowout at maximum fuel stream velocity. As a result, the flame stability of LFG mixing gas was not improved with that of CH$_4$in non-swirl and weak swirl diffusion flame. However, LFG mixing gas had wide flame stabilization region rather than CH$_4$with increasing ambient flow rate in strong swirl. It was also found that flame stability was affected by included quantity of inert gas such as CO$_2$in the weak swirl but by heating value of fuel in strong swirl.

Impact of mixer design to reactants mixing characteristics and gas-phase reactions in the mixing region of a hydrocarbon reformer (개질기 혼합영역 형상에 따른 반응물의 혼합도 및 가스상 반응특성에 대한 수치해석적 연구)

  • Kim, Sunyoung;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.99.1-99.1
    • /
    • 2011
  • Reactant mixing has a critical role in ensuring reformate quality and an important design objective is to achieve sufficiently complete mixture of reactants. For that purpose it is required to understand the coupled transport-kinetics phenomena in the mixing region. Three-dimensional computational fluid dynamics model was developed and validated in previous works. The mixing characteristics in various alternatives of a prototype mixing chamber were compared, and then a reduced reaction kinetics was applied to two extreme designs for investigating the impact of gas-phase reactions. Both designs did not reach threshold ethylene mole fraction of 0.001, but surprisingly more ethylene was generated in the design having better mixing characteristics. The presentation will deliver the development process of coupled transport and kinetics model briefly and the detailed information about the mixing characteristics and gas-phase reactions in two mixer designs.

  • PDF

Effect of Swirling Flow by Normal Injection of Secondary Air on the Gas Residence Time and Mixing Characteristics in a Lab-Scale Cold Model Combustor

  • Shin, D.;Park, S.;Jeon, B.;Yu, T.;Hwang, J.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2284-2291
    • /
    • 2006
  • The present study investigates gas residence time and mixing characteristics for various swirl numbers generated by injection of secondary air into a lab-scale cylindrical combustor. Fine dust particles and butane gas were injected into the test chamber to study the gas residence time and mixing characteristics, respectively. The mixing characteristics were evaluated by standard deviation value of trace gas concentration at different measurement points. The measurement points were located 25 mm above the secondary air injection position. The trace gas concentration was detected by a gas analyzer. The gas residence time was estimated by measuring the temporal pressure difference across a filter media where the particles were captured. The swirl number of 20 for secondary air injection angle of 5$^{\circ}$ gave the best condition: long gas residence time and good mixing performance. Numerical calculations were also carried out to study the physical meanings of the experimental results, which showed good agreement with numerical results.

A Study on the Ralstonia Solanacearum Inactivation using Improved Plasma Process (개선된 플라즈마 공정을 이용한 Ralstonia Solanacearum 불활성화에 관한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.369-378
    • /
    • 2014
  • Effect of improvement of the dielectric barrier discharge (DBD) plasma system on the inactivation performance of bacteria were investigated. The improvement of plasma reactor was performed by combination with the basic plasma reactor and UV process or combination with the basic plasma reactor and circulation system which was equipped with gas-liquid mixer. Experimental results showed that tailing effect was appeared after the exponential decrease in basic plasma reactor. There was no enhancement effect on the Ralstonia Solanacearum inactivation with combination of basic plasma process and UV process. The application of gas-liquid mixing device on the basic plasma reactor reduced inactivation time and led to complete sterilization. The effect existence of gas-liquid mixing device, voltage, air flow rate (1 ~ 5 L/min), water circulation rate (2.8 ~ 9.4 L/min) in gas-liquid mixing plasma, plasma voltage and UV power of gas-liquid mixing plasma+UV process were evaluated. The optimum air flow rate, water circulation rate, voltage of gas-liquid mixing system were 3 L/min, 3.5 L/min and 60 V, respectively. There was no enhancement effect on the Ralstonia Solanacearum inactivation with combination of gas-liquid mixing plasma and UV process.

A Study on the Homogeneity and Stability for HCNG mixing gas (HCNG 혼합가스 균질성 및 안정성 연구)

  • Kim, Young-Gu;Kang, Seung-Gyu;Ahn, Jung-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.319-321
    • /
    • 2014
  • The homogeneity and the long term stability for HCNG(CNG composed of about 20 % hydrogen) have been studied. The homogeneity by using ANOVA shows that the HCNG mixing gas is homogeneous ; the relative uncertainty of homogeneity is 0.0375 %. The long term stability for HCNG mixing gas by using F-test and t-test shows that HCNG mixing gas is stable ; the relative uncertainty of the long term stability is 0.0682 % for seven months.

  • PDF

Effect of Swirling Flow by Normal Injection of Secondary Air on the Gas Residence Time and Mixing Characteristics in a Combustor (연소로 내 2차공기의 주유동 수직방향 선회분사로 인한 선회류가 스월수에 따른 가스 체류시간과 혼합 특성에 미치는 영향)

  • Park Sang-Uk;Jeon Byoung-Il;Yu Tae-U;Hwang Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.48-56
    • /
    • 2006
  • We investigated gas residence time and mixing characteristics due to various swirl numbers generated by normal injection of secondary air to a lab-scale cylinderical combustor. The residence time was estimated by measuring the temporal pressure difference which was caused by deposition of test particles on a filter media after the injection by a syringe. The mixing characteristics were evaluated by standard deviation value of test gas concentration at different measuring points. The test gas concentration was detected by a gas analyzer. The swirl number of $20{\sim}30$ for ${\theta}=5^{\circ}$ caused long residence time enough to improve mixing characteristics. Numerical calculations were also carried out to understand physical meanings of the experimental results.

Prediction of Flow Rate and Drop Size of Low Viscosity Liquid Through Y-Jet Atomizers (Y-Jet노즐을 통한 저점도 액체의 유량 및 입경예측에 관한 연구)

  • 송시홍;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3377-3385
    • /
    • 1994
  • This paper introduces empirical correlations to obtain the gas/liquid flow rates and the spray drop size of low viscosity liquid injected by Y-jet twin-fluid atomizers. The gas flow rate is well correlated with the gas injection pressure and the mixing point pressure, based on the compressible flow theory. Similarly, the liquid flow rate is determined by the liquid injection pressure and the mixing point pressure, and a simple correlation for the liquid discharge coefficient at the liquid port was deduced from the experimental results. The mixing point pressure, which is one of the essential parameters, was expressed in terms of the gas/liquid flow rate ratio and the mixing port length. Disintegration and atomization mechanisms both within the mixing port and outside the atomizer were carefully re-examined, and a "basic" correlation form representing the mean diameter of drops was proposed. The "basic" correlation was expressed in terms of the mean gas density within the mixing port, gas/liquid mass flow rate ratio and the Weber number. Though the correlation is somewhat complicated, it represents the experimental data within an accuracy of ${\pm}15%$.EX>${\pm}15%$.

Effect of burnt gas mixing on the extinction of interacting flames premixed (기연가스의 혼합이 상호작용을 하는 예혼합화염의 소화특성에 미치는 영향에 관한 연구)

  • 임홍근;정석호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.37-48
    • /
    • 1989
  • The effects of burnt gas mixing, which can be caused by turbulent eddy mixing, on the interaction and extinction characteristics of premixed flames are analyzed using large activation energy asymptotics adopting counterflow as a model problem. The results show that the burnt gas mixing, preferential diffusion and heat loss affect the fuel consumption rate, flame temperature and the oxidizer concentration at the flame which influence the flame behavior and the extinction characteristics.

  • PDF