• Title/Summary/Keyword: Gas heating

Search Result 1,230, Processing Time 0.035 seconds

Effects of Gas Composition on the Performance and Emissions of Compressed Natural Gas Engines

  • Min, Byung-Hyouk;Chung, Jin-Taek;Kim, Ho-Young;Park, Simsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.219-226
    • /
    • 2002
  • Natural gas is considered to be a promising alternative fuel for passenger cars, truck transportation and stationary engines providing positive effects both on the environment and energy security. However, since the composition of natural gas fuel varies with location, climate and other factors, it is anticipated that such changes in fuel properties will affect emission characteristics and performance of CNG (Compressed Natural Gas) engines. The purpose of the present study is to investigate the effects of the difference in gas composition on the engine performance and emission characteristics. The results show that THC (Total Hydrocarbon) decreases with increasing Wl (Wobbe Index) and MCP (Maximum Combustion Potential). On the other hand, it is observed that NOx slightly increases as Wl and MCP increase. The TLHV (Total Lower Heating Value of Intake) is proposed in this study as a potential index for compatibility of gas fuels in a CNG engine. There is a variation in power up to 20% depending on the composition of gas when the A/F ratio and spark timing are flexed for a specific gas fuel.

A Study on Accident Frequency by Installing Safety Devices in the LPG Heating and Drying Furnace (LPG 가열로 및 건조로의 안전장치 설치에 따른 사고빈도에 관한 연구)

  • Song, Dong-Woo;Kim, Ki-Sung;Kim, Choong-Hee;Lee, Seong-Gueong;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.49-54
    • /
    • 2015
  • The purpose of this study is to assess the risk of depending on the presence or absence of safety device of domestic heating and drying furnaces, by derivation and analysis of accident frequency of safety devices through FTA (Fault Tree Analysis). Installation standards are lacking in Korean for the safety device of LPG heating and drying furnace, which have a risk of explosion due to structure to trap the leaked gas. Four different safety devices were selected on the basis of NFPA and national standards for combustors of other equipment. Effects of frequency reduction in accidents were analyzed before and after installing the safety devices respectively. As a result, a minimal leakage safety device was presented for preventing damages from gas leak of domestic LPG heating and drying furnace.

A Study on the Application of District Heating System using Sewage Source (하수열원을 이용한 지역난방 적용성 검토)

  • Kim, Sang-Hun;Kim, Dong-Jin;Choi, Dong-Kyoo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.928-933
    • /
    • 2009
  • The purpose of this study is to examine the energy consumption, carbon dioxide emission & energy cost of district heating using sewage source. The annual TOE of heat pump using sewage source save 37.1 percent than city gas boiler. And annual carbon dioxide emission of heat pump cut down 41.3 percent than city gas boiler. If it charges the rate schedule for district heating to apartment resident, collected amount are 3,127,170 thousand won. As energy cost of heat pump & circulation pump are 1,378,072 thousand won. the profits are 1,749,098 thousand won. As payback period is 8.97years, applicability is low level. However, it has advantages in energy consumption, carbon dioxide emission & energy cost. Therefore, it needs to proceed through government assistance.

  • PDF

HEAT TRANSFER ANALYSIS ON THE PREFORM HEATING AND THE GLASS FIBER DRAWING IN A GRAPHITE FURNACE FOR OPTICAL FIBER MANUFACTURING PROCESS (광섬유 생산공정용 퍼니스 내의 모재 가열 및 유리섬유 인출에 대한 열전달 해석)

  • Kim, K.;Kim, D.;Kwak, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.88-91
    • /
    • 2011
  • Glass fiber drawing from a silica preform is one of the most important processes in optical fiber manufacturing. High purify silica preform of cylindrical shape is fed into the graphite furnace, and then a very thin glass fiber of 125 micron diameter is drawn from the softened and heated preform. A computational analysis is performed to investigate the heat transfer characteristics of preform heating and the glass fiber drawing in the furnace. In addition to the dominant radiative heating of preform by the heating element in the furnace, present analysis also includes the convective heat transport by the gas flowing around the preform that experiences neck-dawn profile and the freshly drawn glass fiber at high fiber drawing speed. The computational results present the effects of gas flow on the temperature of preform and glass fiber as well as the neck-down profile of preform.

  • PDF

Effects of Quasi-Carbonization Process on the Mechanical Properties of Spun Yarn Type Quasi-Carbon Fabrics

  • Donghwan Cho;Lee, Jongmoon;Park, Jon-Kyoo
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.318-324
    • /
    • 2002
  • In this paper we have extensively studied what and how processing parameters for quasi-carbonization influence the breaking strength and modulus of resulting quasi-carbon fabrics that are prepared from stabilized PAN fabrics with a spun yarn texture. Seven processing parameters have been considered as follows: applied tension, final heat-treatment temperature, heating rate, heating step, holding time, cooling rate, and purging gas purity. The results indicate that optimal uses of applied tension, final heat-treatment temperature, heating rate, and heating step during quasi-carbonization process are primarily important to increase the tensile properties of quasi-carbon fabrics and holding time, cooling rate, and purging gas purity are less importantly contributed.

A Study on the Practical Use of Alternative Energy for Agriculture in Korea (우리나라 농업의 대체에너지 활동 실태에 관한 연구)

  • 홍지형
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.81-90
    • /
    • 1993
  • Groundwater and animal wastes are typical example which are underutilized resources than their value in agriculture. This paper was to investigate the actual patterns of utilization of water curtain for greenhouses and methane gas utilization from swine wastes in a view point of promoting more efficient use of alternative energy. The results from measurements can be summarized as follows : 1.It was estimated that the maximum heating load per l0a was around 23,2804/hr and the heating load at January showed 3.93X 1064 respectively for strawberry greenhouses with insulation by the water curtain. 2.The average heating cost of the greenhouse with water curtain system amounted to about 75,000 Won per l0a. This result suggested that the greater cultivated area provides less heating cost. 3.The operating volume was about 73 percent of the optimum size of the digester. The net available methane gas rates of the produced gas remained close to 62 percent, But the conventional and small size of the digester was maintained at a lower level of around 20 to 29 percent. 4.It appeared that major problems of biogas production system were required to maintain the temperature of the fermentation above ambient temperature and the optimum volume of digester.

  • PDF

Design of Gas-Injection Port of an Asymmetric Scroll Compressor for Heat Pump Systems (히트 펌프용 비대칭 스크롤 압축기의 가스 인젝션 포트 설계)

  • Kim, Yong-Hee;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.300-306
    • /
    • 2015
  • For an asymmetric scroll compressor for heat pump application, a numerical simulation was carried out to investigate the effects of injection port design on the compressor's performance under gas injection. To validate the simulation, the numerical results were compared with experimental results obtained from a scroll compressor with a base injection port design. There was good agreement between simulation and experimental results, with around a 1% difference in the injection mass flow rate when the injection pressure was below $12kgf/cm^2A$ for the heating mode. Various injection port angular positions were numerically tested to yield better injection performance. The largest improvement in heating capacity was obtained at angles of $240^{\circ}$ and $200^{\circ}$ inward from the scroll wrap end angle for low-temperature and standard heating conditions, respectively, while the maximum COP improvement was at $365^{\circ}$ and $280^{\circ}$, respectively. A considerable improvement in cooling capacity was also found at the injection port angle of $240^{\circ}$.

Performance Characteristics of Water-Chilling Heat Pump Using CO2 on the Variation of Secondary Fluid Conditions (2차 유체 조건 변화에 대한 CO2용 수냉식 열펌프의 성능 특성에 관한 연구)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.543-551
    • /
    • 2007
  • The performance characteristics of water-chilling heat pump using $CO_2$ with respect to variation of inlet temperature and mass flow rate of secondary fluid was investigated experimentally. An experimental apparatus is consisted of a compressor, a gas cooler, an expansion valve, an evaporator and a liquid receiver. All heat exchangers used in the test rig are counter-flow-type heat exchangers with concentric dual tubes, which ate made of copper. The gas cooler and the evaporator consist of 6 and 4 straight sections respectively arranged in parallel, each has 2.4 m length. The experimental results were summarized as the followings : As inlet temperature of secondary fluid in the gas cooler increases from $10^{\circ}C$ to $40^{\circ}C$, the compressor work, heating capacity and heating COP were varied to 37.8%, -13%, -35.9%, respectively. The heating capacity, compressor work, heating COP were turned into 23.3%, 6.42%, 13.1%, respectively when ass flow rate of secondary fluid in the evaporator increases from 70 g/s to 150 g/s. The above tendency is similar with performance variation with respect to temperature variation of secondary fluid in the conventional vapor compression cycle.

A Study on the Optimum Capacity of Combind Heat & Power Plant Related to Size of District Heating System (지역난방 규모에 따른 열병합발전플랜트의 경제적 최적용량 선정에 관한 연구)

  • Chung, Cahn-Kyo;Kim, Hoon
    • Journal of Energy Engineering
    • /
    • v.9 no.2
    • /
    • pp.95-101
    • /
    • 2000
  • The purpose of this study is to find plant utilities capacity for economical operation of combined heat & power by reducing energy expenditure. Using a numerical simulation program CHPSIM, a comparative analysis of additional heat expenditure (AHE) of combined heat & power plant in relation to size of district heating has been performed within the comparison of the difference capacity of gas turbine and steam turbine . As a results, if a 105.2MW gas turbine (exhaust gas temp ; 540$^{\circ}C$) installed in CHP plant can reduced 17-18% yearly the AHE than 75MW gas turbine (520$^{\circ}C$) installed. If a 130-150MW gas turbine (560-580$^{\circ}C$) installed, can reduced 34.7-35.8% of the yearly AHE.

  • PDF