• Title/Summary/Keyword: Gas diffusion layer

Search Result 265, Processing Time 0.025 seconds

The Effect of the Gas Ration on the Characteristics of Plasma Nitrided SCM440 Steel (SCM440강의 플라즈마 질화특성에 미치는 가스비율의 영향)

  • 김무길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.712-720
    • /
    • 1998
  • The effect of H2:N2 gas ratio on the case thickness hardness and nitrides formation in the sur-face of SCM440 machine structural steel have been studied by micro-pulse plasma process. The thickness of compound layer increased with the increase of nitrogen content in the gas com-position. The maximum thickness of compound layer the maximum case depth and the maximum surface hardness were about 15.8${\mu}m$, 400${\mu}m$ and Hv765 respectively in the nitriding condition of 250Pa and 70% nitrogen content at $520^{\circ}C$ for 7hrs. Generally only nitride phases such as ${\'{\gamma}}$($Fe_4N$)$\varepsilon(Fe_2}{_3N}$ phases were detected in compound and diffusion layer by XRD analysis. The amount of $\varepsilon(Fe_2}{_3N}$ phase increased with the increase of nitrogen content. The relative amounts and kind of phases formed in the nitrided case changed with the change of nitrogen content in the gas composition.

  • PDF

The Microstructures and Properties of Surface Layer on the Tool Steel Formed by Ion Nitriding -Effects of Process Parameter- (마이크로 펄스 플라즈마 질화에 의해 생성된 금형 공구강의 표면층에 관한 연구 -공정 변수의 영향-)

  • Lee, J.S.;Kim, H.G.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2001
  • The effects of gas composition, pressure, temperature and time on the case thickness, hardness and nitride formation in the surface of tool steels(STD11 and STD61) have been studied by micro-pulse plasma nitriding. External compound layer and internal diffusion layer and the diffusion layer were observed in the nitrided case of tool steels. The relative amounts and kind of phases formed in the nitrided case changed with the change of nitriding conditions. Generally, only nitride phases such as ${\gamma}(Fe_4N)$, ${\varepsilon}(Fe_{2-3}N)$, or $Cr_{1.75}V_{0.25}N_2$ phases were detected in the compound layer, while nitride and carbide phases such as ${\varepsilon}-nitride(Fe_{2-3}N)$, $(Cr,Fe)_{\gamma}C_3$ or $Fe_3C$ were detected in the diffusion layer by XRD analysis. The thickness of compound layer increased with the increase of nitrogen content in the gas composition. Maximum case depth was obtained at gas pressure of 200Pa.

  • PDF

Study on the surface porosity of porous thin layer electrode for phosphoric acid fuel cell (인산형 연료전지용 다공성 박막의 표면 다공도에 관한 연구)

  • 김조웅;김영우;이주성
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.3
    • /
    • pp.162-168
    • /
    • 1991
  • Gas diffusion and electrolyte penetration in wetproofed gas diffusion electrodes were studied using layers of PTFE- bonded carbon. Minor variations in fabrication and testing procedures resulted in very large variations in catalyst layer wetting characteristics and permiability for reaction gas. By controlling the pore size of gas diffusion electrode carefully by varing the PTFE contents, baking temperature, baking time and ammonium bicarbonate as additive, the primary pore was decreased and the secondary pore was increased and so more reaction gas through the primary pore could be reacted at catalyst agglomertes in the secondary pore. And the cathode current density was increased to more than 400mA.$\textrm{cm}^2$ and Tafel slope value was decreased to lower than 110mA/decade.

  • PDF

The Characteristics Evaluation of the Gas Diffusion Layer for a PEM Fuel Cell by Computational Fluid Dynamics (CFD 해석을 이용한 PEMFC 용 기체확산층의 특성평가)

  • Kim B.H.;Choi J.P.;Jeon B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.207-210
    • /
    • 2005
  • In this paper, a two-dimensional cross-channel model was applied to investigate influence of the gas diffusion layer(GDL) property and flow field geometry in the anode side for proton exchange membrane fuel cell(PEMFC). The GDL is made of a porous material such as carbon cloth, carbon paper, or metal wire mesh. To the simplicity, the GDL is represented as a block of material containing numerous pathways through which gaseous reactants and liquid water can pass. The purpose of present work was to study the effect of the GDL thickness and the porosity, and flow field geometry by computational fluid dynamics(CFD)

  • PDF

A Study on the Mass Flow Effects to the Performance of PEMFC (고분자 전해질형 연료전지내의 질량유동이 성능에 미치는 영향)

  • Park, Chang-Kwon;Jo, In-Su;Oh, Byeong-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.4
    • /
    • pp.422-431
    • /
    • 2007
  • Polymer electrolyte membrane fuel cell(PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance and effect of temperature. These problems can be approached to be solved by using mathematical models which are useful tools for analysis and optimization of fuel cell performance and for heat and water management. In this paper, the present work is to develop an electrochemical model to examine the electrochemical process inside PEM fuel cell. A complete set of considerations of mass, momentum, species and charge is developed and solved numerically with proper account of electrochemical kinetics. When depth of gas channel becomes thinner, diffusion of reactant makes well into gas diffusion layer(GDL) and the performance increases. Although at low current region there is little voltage difference between experimental data of PEM fuel cell and numerical data. When the porosity size of gas diffusion layer for PEM fuel cell is bigger, oxygen diffusion occurs well and oxygen mass fraction appears high in catalyst layer.

Development of System for Measuring Evaporation Rate through Porous Medium in Fuel Cells (연료전지 다공성막을 통한 수분증발량의 정량적 측정에 관한 실험적 연구)

  • Kim, Jong-Rok;Kim, Moo-Hwan;Son, Sang-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.579-582
    • /
    • 2012
  • Removing residual water in a fuel cell is a critical operational process for managing its performance and controlling its lifetime. Understanding the mechanism of water transport in fuel cells is essential for the design of the water removal process. In this study, an experimental method for measuring the water evaporation rate through a gas diffusion layer, which is a porous medium, under steady-state conditions was developed. Experimental bench tests were conducted to apply the developed method. Then, the effects of various parameters of the drying gas and the gas diffusion layer were experimentally measured. The water evaporation rate increased as the humidity of the drying gas decreased and the flow rate of the drying gas increased. In addition, a thinner gas diffusion layer yielded a higher water evaporation rate.

Numerical Simulation of Water Transport in a Gas Diffusion Layer with Microchannels in PEMFC (마이크로채널이 적용된 고분자 전해질 연료전지 가스확산층의 물 이송에 대한 전산해석 연구)

  • Woo, Ahyoung;Cha, Dowon;Kim, Bosung;Kim, Yongchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • The water management is one of the key issues in low operating temperature proton exchange membrane fuel cells (PEMFCs). The gas diffusion layer (GDL) allows the reactant gases flow to the reaction sites of the catalyst layer (CL). At high current density, generated water forms droplets because the normal operating temperature is $60{\sim}80^{\circ}C$. If liquid water is not evacuated properly, the pores in the GDL will be blocked and the performance will be reduced severely. In this study, the microchannel GDL was proposed to solve the flooding problem. The liquid water transport through 3-D constructed conventional GDL and microchannel GDL was analyzed varying air velocity, water velocity, and contact angle. The simulation results showed that the liquid water was evacuated rapidly through the microchannel GDL because of the lower flow resistance. Therefore, the microchannel GDL was efficient to remove liquid water in the GDL and gas channels.

Experimental Study on Carbon Corrosion of Gas Diffusion Layer in PEM Fuel Cell (고분자전해질형 연료전지 가스확산층의 탄소 부식에 관한 실험적 분석)

  • Ha, Taehun;Cho, Junhyun;Park, Jaeman;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.76.1-76.1
    • /
    • 2010
  • Recently, many efforts to solve the durability problem of PEM fuel cell are carried on constantly. However, despite this attention, durability researches of gas diffusion layer (GDL) are not much reported yet. Generally, GDL of PEM fuel cell experiences three external attacks, which are dissolution of water, erosion of gas flow, corrosion of electric potential. In this study, among these degradation factors, carbon corrosion of electric potential was focused and investigated with accelerated carbon corrosion test. Through the test, it is confirmed that carbon corrosion occurred at GDL, and corroded GDL decreased a performance of operating fuel cell. The property changes of GDL were measured with various methods such as air permeability meter, pore distribution analyzer, thermo gravimetric analyzer, and tensile stress test to discover the effects of carbon corrosion. Carbon corrosion caused not only loss of weight and thickness, but also degradation of mechanical strength of GDL. In addition, to analysis the reason of GDL property changes, a surface and a cross section of GDL were observed with scanning electron microscope. After 100 hours test, the GDL showed serious damage in center of layer.

  • PDF

A Study on the Bypass Flow Penetrating Through a Gas Diffusion Layer in a PEM Fuel Cell with Serpentine Flow Channels (사행유로를 갖는 고분자연료전지내부에서 가스확산층을 통과하는 반응가스 우회유동에 대한 연구)

  • Cho, Choong-Won;Ahn, Eun-Jin;Lee, Seung-Bo;Yoon, Young-Gi;Lee, Won-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.288-297
    • /
    • 2009
  • A serpentine channel geometry often used in a fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from the intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with high aspect ratio of active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compressive forces. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds that of dropwise condensation in cathode channels.

The Effect of a Bypass Flow Penetrating through a Gas Diffusion Layer on Performance of a PEM Fuel Cell (가스확산층을 통과하는 반응가스 우회유동이 고분자 연로전지의 성능에 미치는 영향)

  • Cho, Choong-Won;Ahn, Eun-Jin;Lee, Seung-Bo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.147-151
    • /
    • 2007
  • A serpentine channel geometry often used in a polymer electrolyte membrane fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with relatively high aspect ratio active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compression conditions. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds to that of dropwise condensation in cathode channels.

  • PDF