• Title/Summary/Keyword: Gas cooling systems

Search Result 139, Processing Time 0.028 seconds

Analysis for the Economic efficiency of District Heating and Gas Engine Co-generation System comparing with Central Heating System (중앙난방방식을 지역난방.소형열병합난방방식으로 전환시의 경제성 비교 분석)

  • Kim, Kyu-Saeng;Lee, Sang-Hyeok;Hong, Kyung-Pyo;Won, Young-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.459-465
    • /
    • 2007
  • This study was conducted to calculate the LCC of a apartment complex with a type of heating system, district heating and cogeneration system. For the purpose of analyzing LCC according to size of apartment complex, 500, 1,500 and 4,000 houses of model apartment selected. This research performs design of heating system and the life cycle cost analysis including an initial cost, energy cost, maintenance and operation cost, replacement cost and renovation cost during the project period(15years). According to the calculated results, 1) Initial cost of cogeneration system with 500, 1500 and 4000 houses is higher than district heating system each of 20%, 13%, 12%. 2) In case of cogeneration system, the payback period by electric generation is 5.21, 4.92 and 4.47 years and saving cost was calculated 29 billion won, 94 billion won and 262 billion won after payback period. 3) Cogeneration system LCC was 1.12, 1.07 and 1.06 times larger than district system with the size of apartment complex. According to the case of this study district heating system is more efficient than cogeneration system in terms of the reduction of LCC. 4) Gas Engine Co-generation System is more efficient than other systems because it can collect progressive part from electric charge progressive stage system. However, the efficiency is decreasing because of raising of fuel bills(LNG) and lowering of power rate for house use. Especially the engine is foreign-made so the cost of maintenance and repair is high and the technical expert is short. 5) District heating is also affected by fuel bills so we should improve energy efficiency through recovering of waste heat(incineration heat, etc.). Also, we should supply district cooling on the pattern of heat using of let the temperature high in winter and low in summer.

  • PDF

Radiation Damage by the Pool Fire of LNG Storage Tank (LNG 저장 탱크의 Pool Fire에 의한 복사열 피해)

  • Sohn Jung-Hwan;Hahn Yoon-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.14-22
    • /
    • 1998
  • In this work, in order to quantitatively predict the radiation flux and propose an idea about how to reduce the radiation damage, the radiation flux caused by pool fire of an LNG storage tank has been calculated using the RISC (Risk and Industrial Safety Consultant) proposed model under various conditions. Model predictions showed that the most important parameter affecting the radiation flux by the LNG pool fire is the wind speed. The extent of radiation damage to a target from fire flame was more significant with variation of wind speed at a low wind speed than with that at a high wind speed. It was found that the radiation damage by the former is substantially reduced with planting windbreak system around the plant. Since the windbreak is most economical than any other method, it is strongly suggested to plant a tree belt in the factory surroundings, especially near by the area of gas storage facilities, linking with water cooling and fire protection systems.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.

Recent Progress in Air Conditioning and Refrigeration Research -A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2000 and 2001- (공기조화, 냉동 분야의 최근 연구 동향 -2000년 및 2001년 학회지 논문에 대한 종합적 고찰 -)

  • 강신형;한화택;조금남;이승복;조형희;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1102-1139
    • /
    • 2002
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2000 and 2001 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD technologies were widely applied for developing facilities and their systems. (2) Most of papers related with heat transfer analysis and heat exchanger shows dealt with convection, evaporation, and channel flow for the design application of heat exchanger. The numerical heat transfer simulation studies have been peformed and reported to show heat transfer characteristics. Experimental as well as numerical studies on heat exchanger were reported, while not many papers are available for the system analysis including heat exchanger. (3) A review of the recent studies on heat pump system shows that performance analysis and control of heat pump have been peformed by various simulations and experiments. The research papers on multi-type heat pump system increased significantly. The studies on heat pipe have been examined experimently for change of working characteristics and strut lure. Research on the phase change has been carried out steadily and operation strategies of encapsulated ice storage tank are reported experimentally in several papers. (4) A review of recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. Evaporation and condensation heat transfer characteristics are investigated for tube shapes and new alternative refrigerants. Studies on components of refrigeration/air conditioning system are carried to examine efficiency for various compressors and performance of new expansion devices. In addition to thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out, however research works on two-phase flow seemed to be insufficient. (5) A review of the recent studies on absorption cooling system indicates that heat and mass transfer phenomena have been investigated to improve absorber performance. Various experimental data have been presented and several simulation models have been proposed. A review of the recent studies on duct and ventilation shows that ventilation indices have been proposed to quantify the ventilation performance in buildings and tunnels. Main efforts have been focused on the applications of ventilation effectiveness in practice, either numerically using computational fluid dynamics or experimentally using tracer gas techniques. (6) Based on a review of recent studies on indoor thermal environment and building service systems, research issues have mainly focused on many innovative ideas such as underfloor air-conditioning system, personal environmental modules, radiant floor cooling and etc. Also, the new approaches for minimizing energy consumption as well as improving indoor environmental conditions through predictive control of HVAC systems, various activities of building energy management and cost-benefit analysis for economic evaluation were highlighted.

Development of the Insufflator for Endoscopic Surgery using the Fluidic System in Printed Circuit Board (유공압 부품이 내장된 인쇄회로기판을 활용한 내시경 수술용 기복기의 개발)

  • Lee, Hee-Nam;Kim, In-Young;Chee, Young-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.32-36
    • /
    • 2011
  • The insufflators in endoscopic surgery supply carbon dioxide to make the air-filled cavity in the abdomen. It contains many kinds of pneumatic and electronic parts and they are connected with the air tubes and electrical wires. The printed circuit boards (PCB) perform wiring, holding and cooling tasks in electronic systems. In this study, the PCB is used as the air channel for insufflators to decrease the cost, volume, and the malfunction according to aging of the device. Three layers of PCB made of FR4 are combined with prepreg as adhesive which has the internal airway channel according to the design. By mounting the pressure sensors and valves, the PCB based fluidic system is implemented. After calibration of flow sensor, the flow rate of the gas also can be measured. The climate test, temperature test, and biocompatibility test showed this idea can be used in insufflators for laparoscopic surgery.

Modeling, Control and Simulation of Microturbine Generator for Distributed Generation System in Smart Grid Application

  • Hong, Won-Pyo;Cho, Jae-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.57-66
    • /
    • 2009
  • Microturbines system (MTS) are currently being deployed as small scale on-site distributed generators for microgrids and smart grids. In order to fully exploit DG potentialities, advanced integrated controls that include power electronics facilities, communication technologies and advanced modeling are required. Significant expectations are posed on gas microturbines that can be easily installed in large commercial and public buildings. Modeling, control, simulation of microturbine generator based distributed generation system in smart grid application of buildings for both grid-connected and islanding conditions are presented. It also incorporates modeling and simulation of MT with a speed control system of the MT-permanent magnet synchronous generator to keep the speed constant with load variation. Model and simulations are performed using MATLAB, Simulink and SimPowerSystem software package. The model is built from the dynamics of each part with their interconnections. This simplified model is a useful tool for studying the various operational aspects of MT and is also applicable with building cooling, heating and power (BCHP) systems

Study on Characteristics of Laser Surface Transformation Hardening for Rod-shaped Carbon Steel (I) - Characteristics of Surface Transformation Hardening by Laser Heat Source with Gaussian Intensify distribution - (탄소강 환봉의 레이저 표면변태경화 특성에 관한 연구 (I) - 가우시안 파워밀도 분포의 레이저 열원을 이용한 표면변태경화 특성 -)

  • Kim, Jong-Do;Kang, Woon-Ju
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.78-84
    • /
    • 2007
  • Laser Material Processing has been replaced the conventional machining systems - cutting, drilling, welding and surface modification and so on. Especially, LTH(Laser Transformation Hardening) process is one branch of the laser surface modification process. Conventionally, some techniques like a gas carburizing and nitriding as well as induction and torch heating have been used to harden the carbon steels. But these methods not only request post-machining resulted from a deformation but also have complex processing procedures. Besides, LTH process has some merits as : 1. It is easy to control the case depth because of output(laser power) adjustability. 2. It is able to harden the localized and complicated a.ea and minimize a deformation due to a unique property of a localized heat source. 3. An additional cooling medium is not required due to self quenching. 4. A prominent hardening results can be obtained. This study is related to the surface hardening of the rod-shaped carbon steel applied to the lathe based complex processing mechanism, a basic behavior of surface hardening, hardness distribution and structural characteristics in the hardened zone.

A Study on the Prediction of Transport Properties of Hydrocarbon Aviation Fuels Using the Methane-based TRAPP Method (Methane-based TRAPP method를 이용한 탄화수소 항공유의 전달 물성치 예측 연구)

  • Hwang, Sung-rok;Lee, Hyung Ju
    • Journal of ILASS-Korea
    • /
    • v.27 no.2
    • /
    • pp.66-76
    • /
    • 2022
  • This study presents a prediction methodology of transport properties using the methane-based TRAPP (m-TRAPP) method in a wide range of temperature and pressure conditions including both subcritical and supercritical regions, in order to obtain thermo-physical properties for hydrocarbon aviation fuels and their products resulting from endothermic reactions. The viscosity and thermal conductivity are predicted in the temperature range from 300 to 1000 K and the pressure from 0.1 to 5.0 MPa, which includes all of the liquid, gas, and the supercitical regions of representative hydrocarbon fuels. The predicted values are compared with those data obtained from the NIST database. It was demonstrated that the m-TRAPP method can give reasonable predictions of both viscosity and thermal conductivity in the wide range of temperature and pressure conditions studied in this paper. However, there still exists large discrepancy between the current data and established values by NIST, especially for the liquid phase. Compared to the thermal conductivity predictions, the calculated viscosities are in better agreement with the NIST database. In order to consider a wide range of conditions, it is suggested to select an appropriate method through further comparison with another improved prediction methodologies of transport properties.

Genetic algorithm-based design of a nonlinear PID controller for the temperature control of load-following coolant systems (부하추종 냉각수 시스템의 온도 제어를 위한 유전알고리즘 기반 비선형 PID 제어기 설계)

  • Yu-Soo, LEE;Soon-Kyu, HWANG;Jong-Kap, AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.4
    • /
    • pp.359-366
    • /
    • 2022
  • In this study, the load fluctuation of the main engine is considered to be a disturbance for the jacket coolant temperature control system of the low-speed two-stroke main diesel engine on the ships. A nonlinear PID temperature control system with satisfactory disturbance rejection performance was designed by rapidly transmitting the load change value to the controller for following the reference set value. The feed-forwarded load fluctuation is considered the set points of the dual loop control system to be changed. Real-coded genetic algorithms were used as an optimization tool to tune the gains for the nonlinear PID controller. ITAE was used as an evaluation function for optimization. For the evaluation function, the engine jacket coolant outlet temperature was considered. As a result of simulating the proposed cascade nonlinear PID control system, it was confirmed that the disturbance caused by the load fluctuation was eliminated with satisfactory performance and that the changed set value was followed.

An efficient finite element analysis model for thermal plate forming in shipbuilding

  • S.L. Arun Kumar;R. Sharma;S.K. Bhattacharyya
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.367-384
    • /
    • 2023
  • Herein, we present the design and development of an efficient finite element analysis model for thermal plate forming in shipbuilding. Double curvature shells in the ship building industries are primarily formed through the thermal forming technique. Thermal forming involves heating of steel plates using heat sources like oxy-acetylene gas torch, laser, and induction heating, etc. The differential expansion and contraction across the plate thickness cause plastic deformation and bending of plates. Thermal forming is a complex forming technique as the plastic deformation and bending depends on many factors such as peak temperature, heating and cooling rate, depth of heated zone and many other secondary factors. In this work, we develop an efficient finite element analysis model for the thermo-mechanical analysis of thermal forming. Different simulations are reported to study the effect of various parameters affecting the process. Temperature dependent properties are used in the analysis and the finite element analysis model is used to identify the critical flame velocity to avoid recrystallization of plate material. A spring connected plate is modeled for structural analysis using spring elements and that helps in identifying the resultant shapes of various thermal forming patterns. Finally, detailed simulation results are reported to establish the efficacy, applicability and efficiency of the designed and developed finite element analysis model.