• Title/Summary/Keyword: Gas cooling heat transfer coefficient

Search Result 57, Processing Time 0.029 seconds

A Study on the Condensation Performance for the Horizontal Heat Transfer Tubes with Various Fin Attached (형상이 다른 수평 원형 전열관의 응축 성능에 관한 연구)

  • Han, Kyu-Il;Park, Jong-Un
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.4 no.1
    • /
    • pp.47-61
    • /
    • 1992
  • An experimental study was carried out to investigate the condensation performance for the horizontal cylindrical heat transfer tube with various fin attached using R-11 vapor. The heat transfer tube used in this study was supplied by SUNG HYUNG METAL CO., LTD. Four different types of heat transfer tubes (plain tube, SH-CYR tube, thermocor tube and thermoexcel tube) were used. Each tube was surrounded by circular acrylate tube, and R-11 gas heated by boiler flows into the acrylate tube. Cooling water counter-flows in heat transfer tubes. Heat transfer coefficient of the plain tube from measured data was compared with those of three other tubes. The results are summarized as follows: 1. As the cooling water temperature decreased, the liquid film of R-11 turned to droplet drop on the top surface of the horizontal tube. 2. Heat transfer coefficient calculated theoretically was higher than that obtained from the experimental data. 3. As far as the condensation concerns the thermocor tube is the highest, the SH-CYR tube is the second, and the thermoexcel tube is the third excluding the plain tube.

  • PDF

Characteristics of Heat/Mass Transfer and Pressure Drop in a Square Duct with Compound-Angled Rib Turbulaters (복합각도 요철을 가지는 사각 덕트 내의 열전달 및 압력강하 특성)

  • Choi, Chung;Rhee, Dong Ho;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.325-333
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside the cooling passage of the gas-turbine blades. It is important to increase not only the heat transfer rates but also the uniformity of heat transfer in the cooling passage. The square duct has compound-angled ribs with $60^{\circ},\;70^{\circ}$ and $90^{\circ}$ attack angles, which are installed on the test plate surfaces. a naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The ribs disturb the main flow resulting in the recirculation and secondary flows near the ribbed wall and the vertices near the side-wall. The local heat transfer and the secondary flow in the duct are changed largely according to the rib orientation. Therefore, geometry and arrangement of the ribs are important fur the advantageous cooling performance. The angled ribs increase the heat transfer discrepancy between the wall and center regions because of the interaction of the secondary flows. The average heat/mass transfer coefficient and pressure drop of the ribs with the $60^{\circ}$ $-90^{\circ}$ compound-angle are higher than those with the $60^{\circ}$ attack angle. Also, the thermal efficiency of the compound-angled rib is higher than that with the $60^{\circ}$ attack angle. The uniformity of heat/mass transfer coefficient on the cross ribs may is higher than that on the parallel ribs array.

  • PDF

Heat/Mass Transfer and Pressure Drop of Square Duct with V-shape Ribs (쐐기형 요철이 설치된 사각덕트에서의 열전달 및 압력강하 특성)

  • Choi, Chung;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.280-287
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside the rib-roughened cooling passage of the gas turbine blades. A square duct with rectangular ribs is used and $\wedge-$ and V-shape ribs with $60^{\circ}$ attack angle are installed on the test plate surfaces. Naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The ribs disturb the main flow resulting in the recirculation and secondary flows near the ribbed wall and the vortices near the side-wall. The local heat transfer and the secondary flow in the duct are changed largely according to the rib orientation. A square duct with $\wedge$ and V-shape ribs has two pairs of secondary flow because of the rib arrangement. So, the duct has complex heat/mass transfer distribution. The average heat/mass transfer coefficient and pressure drop of $\wedge-$ and V-shape ribs are higher than those with $90^{\circ}$ and $60^{\circ}$ attack angles. The average heat/mass transfer coefficient on the $\wedge-shape$ ribs is higher than that on the V-shape ribs. Also, the uniformity of heat/mass transfer coefficient on discrete ribs is higher than that on continuous rib.

  • PDF

Implementation of a new empirical model of steam condensation for the passive containment cooling system into MARS-KS code: Application to containment transient analysis

  • Lee, Yeon-Gun;Lim, Sang Gyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3196-3206
    • /
    • 2021
  • For the Korean design of the PCCS (passive containment cooling system) in an innovative PWR, the overall thermal resistance around a condenser tube is dominated by the heat transfer coefficient of steam condensation on the exterior surface. It has been reported, however, that the calculated heat transfer coefficients by thermal-hydraulic system codes were much lower than measured data in separate effect tests. In this study, a new empirical model of steam condensation in the presence of a noncondensable gas was implemented into the MARS-KS 1.4 code to replace the conventional Colburn-Hougen model. The selected correlation had been developed from condensation test data obtained at the JERICHO (JNU Experimental Rig for Investigation of Condensation Heat transfer On tube) facility, and considered the effect of the Grashof number for naturally circulating gas mixture and the curvature of the condenser tube. The modified MARS-KS code was applied to simulate the transient response of the containment equipped with the PCCS to the large-break loss-of-coolant accident. The heat removal performances of the PCCS and corresponding evolution of the containment pressure were compared to those calculated via the original model. Various thermal-hydraulic parameters associated with the natural circulation operation through the heat transport circuit were also investigated.

Heat/Mass Transfer and Pressure Drop in A Square Duct with V-Shaped Ribs (쐐기형 요철이 설치된 사각덕트에서의 열/물질전달 및 압력강하 특성)

  • Choi, Chung;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1542-1551
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer characteristics and pressure drop inside the rib-roughened cooling passage of gas turbine blades. The internal cooling passage is simulated using a square duct with h- and V-shaped rectangular ribs which have a 60。attack angle. A naphthalene sublimation technique is employed to determine the detailed local heat/mass transfer coefficients using the heat and mass transfer analogy. The ribs disturb the main flow resulting in the recirculation and secondary flows near the ribbed wail. The secondary flow patterns and the local heat transfer in the duct are changed significantly according to the rib orientation. A square duct with ∧ - and V-shaped ribs have two pairs of secondary flow due to the rib arrangement. Therefore, the average heat/mass transfer coefficients and pressure drop of ∧ - and V-shaped ribs are higher than those of the continuous ribs with 90$^{\circ}$ and 60$^{\circ}$attack angles. The ∧-shaped ribs have higher heat/mass transfer coefficients than the V-shaped ribs, and the uniformity of heat/mass transfer coefficient are increased with the discrete ribs due to the flow leakage and acceleration near the surface.

Effect of Dissolved Gases on Liquid Droplet Heat Transfer Enhancement (액적 열전달 향상에 미치는 Dissolved 가스의 영향에 관한 연구)

  • Lee, Jung-Ho;Kim, Jung-Ho;Kiger, Kenneth T.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1491-1498
    • /
    • 2003
  • Droplet evaporation can be used to transfer large amounts of energy since heat is transferred across a thin liquid film. Spreading the drop over a larger area can enhance this heat transfer. One method of accomplishing this is to dissolve gas into the liquid. When the drop strikes the surface, a gas bubble nucleates and can grow and merge within the liquid, resulting in an increase in the droplet diameter. In this study, time and space resolved heat transfer characteristics for a single droplet striking a heated surface were experimentally investigated. The local wall heat flux and temperature measurements were provided by a novel experimental technique in which 96 individually controlled heaters were used to map the heat transfer coefficient contour on the surface. A high-speed digital video camera was used to simultaneously record images of the drop from below. The measurements to date indicate that significantly smaller droplet evaporation times can be achieved. The splat diameter was observed to increase with time just after the initial transient dies out due to the growth of the bubble, in contrast to a monotonically decreasing splat diameter for the case of no bubbles. Bursting of the bubble corresponded to a sudden decrease in droplet heat transfer.

  • PDF

Development of Design Program of Regeneratively Cooled Combustion Chamber (재생냉각 연소실 설계 프로그램 개발)

  • Cho, Won-Kook;Seol, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.102-110
    • /
    • 2004
  • A design code validated against the thermal analysis results of CFD and published RTE code for a regeneratively cooled combustion chamber has been developed. The major function of the code is to predict the regenerative cooling performance and stress of the chamber wall. Adopted are the empirical correlation for the evaluation of the heat transfer coefficient of hot gas and coolant, and theoretical formula for the fin effect of the channel rib. The hot-gas-side wall temperature from the present code shows 100 K difference at most compared to RTE results. It shows less than 10 % difference for the heat flux thrall through the chamber wall and hot-gas-side convective heat transfer coefficient. The major cause of the wall temperature difference is due to the underestimation of the fin effect of the channel rib.

Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions (냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성)

  • Ham, Jin-Ki;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.

A study on the heat transfer of the turbocharged gasoline engine (터보과급 가솔린기관의 열전달에 관한 연구)

  • 최영돈;홍진관
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.69-82
    • /
    • 1988
  • Heat transfer experiment is carried out during the performance test of the 4-cylinder 4-stroke cycle turbo-charged gasoline engine. Cycle simulation employing the measured pressure in cylinder, the cooling water temperature and flow rate and others is carried out in order to calculate the gas temperature in cylinder. In this simulation combustion process was simulated by Annand's two zone model and suction, compression, and other processes are calculated completely. From this simulation, we can obtain not only the heat transfer coefficient but also the flame speed, turbulent burning velocity, flame factor and the boiling condition of cooling passage. The results are investigated with engine speed, equivalence ratio and spark advance.

  • PDF

Characteristic of the Ion Wind Using Corona Discharge and Enhancement of Heat Transfer (코로나 방전을 이용한 이온풍의 특성분석 및 열전달 향상)

  • Lee Jae-Il;Hwang Yu-Jin;Joo Ho-Young;Ahn Young-Chull;Shin Hee-Soo;Lee Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1022-1027
    • /
    • 2005
  • An experimental study is conducted to investigate the characteristics of the ion wind generated by the electric field between a needle electrode and the parallel plate electrodes. The ion wind enhances heat and mass transfer between the surface and the surrounding gas. Moreover such enhancement makes no noise or vibration. This study is conducted to develop the electronic cooling device. The measured gas velocities and heat transfer coefficients are proportional to the applied voltage. The heat transfer coefficient can be increased as compared with a natural convection. The maximum enhancement of heat transfer obtained in this system is $47\%$ for 3 W in heat transfer rate.