• Title/Summary/Keyword: Gas control valve

Search Result 248, Processing Time 0.026 seconds

Transient Analysis of a Liquid Rocket Engine System Considering Thrust Control (추력 제어를 고려한 액체로켓 엔진시스템 과도해석)

  • Park Soon-Young;Choi Hwan-Seok;Seol Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.67-75
    • /
    • 2004
  • It is essential to develop a transient analysis model for the turbopump-fed type liquid rocket engine development, especially for deriving the number of test and its parameters. In this study we proposed a mathematical model of turbopump-fed type liquid rocket engine, and inspected transient mode changes of a rocket engine according to variations of thrust control valve opening ratio. To verify the results, we solved the same problem with AnaSyn software from Russia, and concluded that the results of transient code we developed deviated within 2% from AnaSyn results. Also, using the transient engine analysis code we showed the possibility to find out the system level design Parameters of the components. For example, we modeled a pressure stabilizer which is used to control the consistency of mixture ratio in the gas generator as forced damping system, and found the stability range of the natural frequency and the damping ratio with the transient engine system analysis code.

Study of Thrust Control Performance Improvement for Hybrid Rocket Applications (하이브리드 로켓의 추력제어 성능 향상에 관한 연구)

  • Choi, Jae-Sung;Kang, Wan-Kyu;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • In this study, we tried to improve the thrust control performance through the thrust control combustion experiment of the hybrid rocket. We constructed the system which controls the oxidizer flow by combining a needle valve with a stepping motor and controlling the stepping motor drive according to the thrust control command order. Gas oxygen was used as the oxidizer for two different propellants, PE(Polyethylene), PC(Polycarbonate), respectively. To improve the slow response time and the oscillation phenomenon in the beginning stage of the thrust control combustion experiment, we measured and analyzed the change of the flow speed of the propellant pipe. The revised thrust control combustion experiment showed that the thrust was stably controlled with the margin or error from the thrust command within ${\pm}1$ N.

A Study on the Performance of Thermal Mass Flowmeter (열량형 질량 유량계의 성능 평가)

  • Choi, Y.M.;Park, K.A.;Yoon, B.H.;Jang, S.;Choi, H.M.;Lee, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.595-600
    • /
    • 2001
  • Thermal mass flow meter(TMF) and thermal mass flow controller(MFC) were used to measure and to control the mass flow rate of gases. TMF and MFC were designed for specified working pressure and gas. For the case of different working pressure and gases, the flow rate measurement accuracy decreased dramatically. In this study, a TMF and MFC was tested with three different gases and pressure range from 0.2 MPa up to 1.0 MPa. Effect of specific heat causes to increase flow measurement error as much as ratio of specific heat compared with reference gas. Changing of pressure causes to increase flow rate measurement error about -0.2% as the working pressure decreased 0.1 MPa. Response time of MFC was below 3.12 s for the case of increasing of flow rate. But the response time was increased up to 6.92 s for the case of decreasing of flow rate. When the solenoid valve was fully closed, a initial delay time of output of MFC was increased up to 1.36 s.

  • PDF

A Study on Inflation Performance Analysis and Test of A Wearable Airbag for Bikers (자전거 탑승자용 웨어러블 에어백의 팽창성능 해석 및 시험에 관한 연구)

  • Kim, Hyun Sik;Byun, Gi Sik;Baek, Woon Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.22-27
    • /
    • 2019
  • Bikers can be subjected to accidents during their bicycling. Helmets are only good, if any, for their head protection. A wearable airbag can protect the human neck area if it is properly designed. This airbag system is composed of an inflater and an airbag. The inflater contains a pressurized gas cylinder and a piercing device. The airbag is an inflatable fabric surrounding the human neck. When a bicycle accident happens, a sensor captures the motion of the biker and a microcomputer sends a signal to open a valve in the inflator to supply the pressurized gas to the airbag. An important issue of this system is that the airbag should be quickly inflated to protect the human neck. This paper deals with the airbag inflation time simulation and some issues to design a wearable airbag system. Also, a prototype was tested to show its feasibility using a human dummy mounted on a running cart.

Heat Treatment for Morphological Changes of $Al_2O_3$ (단결정에서 열처리에 의한 형태학적 변화)

  • Cho, Hyun-Seob;Jun, Ho-Ik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.337-340
    • /
    • 2010
  • It is a quite quality concerning to control temperature of single crystalline growth as it does when you get most of heat treating products. It is also important factor to control temperature when you make the Al2O3(single crystalline) used to artificial jewels, glass of watches, heat resistant transparent glasses. Thus, it is a major interest to get the proper temperature in accordance with the time process while you are making mixture of oxygen and hydrogen to have the right temperature. In this paper, we will study of electrical valve positioning system for the gas mixture to improve the quality of products.

  • PDF

Design of DC-MOTOR for $Al_{2}O_3$ Growth (단결정($Al_{2}O_3$) 성장을 위한 DC-MOTOR의 설계 및 구현)

  • Cho, Hyeon-Seob;Song, Yong-Hwa;Cho, Yong-Min;Park, Wal-Seo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2793-2795
    • /
    • 2000
  • It is a quite quality concerning to control temperature of single crystalline growth as it does when you get most of heat treating products. It is also important factor to control temperature when you make the Al2O3(single crystalline) used to artificial jewels, glass of watches. heat resistant transparent glasses, Thus. it is a major interest to get the proper temperature in accordance with the time process while you are making mixture of oxygen and hydrogen to have the right temperature. In this paper, we will study of electrical valve positioning system for the gas mixture to improve the quality of products.

  • PDF

The Embodiment of GAS Pressure Controller for Temperature Control of Sing Crystal $(Al_2O_3)$ Growing Furnace (단결정$(Al_2O_3)$ 성장 노(爐)의 온도 조절용 GAS압력 제어기의 구현)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.207-211
    • /
    • 2007
  • It is a quite quality concerning to control the temperature of single crystalline growth as it does when we get most of heat treating products. It is also important factor to control the temperature when we make the $Al_2O_3$(single crystalline) used to artificial jewels, glass of watches, and heat resistant transparent glasses. Thus, it is a major interest to get the proper temperature in accordance with the time process while we are making mixture of oxygen and hydrogen to have the right temperature. In this paper, we will study of electrical valve positioning system with DC-Motor for the gas mixture to improve the quality of products.

  • PDF

Speed Control of Marine Gas Turbine Engine using Nonlinear PID Controller (비선형 PID 제어기를 이용한 선박용 가스터빈 엔진의 속도 제어)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.457-463
    • /
    • 2015
  • A gas turbine engine plays an important role as a prime mover that is used in the marine transportation field as well as the space/aviation and power plant fields. However, it has a complicated structure and there is a time delay element in the combustion process. Therefore, an elaborate mathematical model needs to be developed to control a gas turbine engine. In this study, a modeling technique for a gas generator, a PLA actuator, and a metering valve, which are major components of a gas turbine engine, is explained. In addition, sub-models are obtained at several operating points in a steady state based on the trial running data of a gas turbine engine, and a method for controlling the engine speed is proposed by designing an NPID controller for each sub-model. The proposed NPID controller uses three kinds of gains that are implemented with a nonlinear function. The parameters of the NPID controller are tuned using real-coded genetic algorithms in terms of minimizing the objective function. The validity of the proposed method is examined by applying to a gas turbine engine and by conducting a simulation.

Optimization of Diesel Engine Performance with Dual Loop EGR considering Boost Pressure, Back Pressure, Start of Injection and Injection Mass (과급압력, 배압, 분사 시기 및 분사량에 따른 복합 방식 배기 재순환 시스템 적용 디젤 엔진의 최적화에 대한 연구)

  • Park, Jung-Soo;Lee, Kyo-Seung;Song, Soon-Ho;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.136-144
    • /
    • 2010
  • Exhaust gas recirculation (EGR) is an emission control technology allowing significant NOx emission reduction from light-and heavy duty diesel engines. The future EGR type, dual loop EGR, combining features of high pressure loop EGR and low pressure loop EGR, was developed and optimized by using a commercial engine simulation program, GT-POWER. Some variables were selected to control dual loop EGR system such as VGT (Variable Geometry Turbocharger)performance, especially turbo speed, flap valve opening diameter at the exhaust tail pipe, and EGR valve opening diameter. Applying the dual loop EGR system in the light-duty diesel engine might cause some problems, such as decrease of engine performance and increase of brake specific fuel consumption (BSFC). So proper EGR rate (or mass flow) control would be needed because there are trade-offs of two types of the EGR (HPL and LPL) features. In this study, a diesel engine under dual loop EGR system was optimized by using design of experiment (DoE). Some dominant variables were determined which had effects on torque, BSFC, NOx, and EGR rate. As a result, optimization was performed to compensate the torque and BSFC by controlling start of injection (SOI), injection mass and EGR valves, etc.

A Study on the Manufacture of the Artificial Cardiac Tissue Valve (생체판의 제작 및 실험)

  • Kim, Hyoung-Mook;Song, Yo-Jun;Sohn, Kwang-Hyun
    • Journal of Chest Surgery
    • /
    • v.12 no.4
    • /
    • pp.383-394
    • /
    • 1979
  • Treatment of valvular heart disease with valve replacement has been one of the most popular procedures in cardiac surgery recently. Although, first effort was directed toward the prosthetic valve, it soon became popular that bioprosthesis, the valvular xenograft, was prefered in the majority cases. Valvular xenograft has some superiority to the artificial prosthetic valve in some points of thromboembolism and hemolytic anemia, and it also has some inferiority of durability, immunologic reaction and resistance to Infection. Tremendous efforts were made to cover the inferiority with several methods of collection, preservation, and valve mounting of the porcine valve or pericardium of the calf, and also with surgical technique of the valvular xenograft replacement. Auther has collected 320 porcine aortic valves immediately after slaughter, and aortic cusps were coapted with cotton balls in the Valsalva sinuses to protect valve deformity after immersion in the Hanks' solution, and oxidation, cross-linking and reduction procedures were completed after the proposal of Carpentier in 1972. Well preserved aortic valves were suture mounted in the hand-made tissue valve frame of 19, 21, and 23 mm J.d., and also in the prosthetic vascular segment of 19 mm Ld. with 4-0 nylon sutures after careful trimming of the aortic valves. Completed valves were evaluated with bacteriologic culture, pressure tolerance test with tolerane gauge, valve durability test in the saline glycerine mixed solution with tolerance test machine in the speed of 300 rpm, and again with pathologic changes to obtain following results: 1. Bacteriologic culture of the valve tissue in five different preservation method for two weeks revealed excellent and satisfactory result in view of sterilization including 0.65% glutaraldehyde preservation group for one week bacteriologic culture except one tissue with Citobacter freundii in 75% ethanol preserved group. 2. Pressure tolerance test was done with an apparatus composed of V-connected manometer and pressure applicator. Tolerable limit of pressure was recorded when central leaking jet of saline was observed. Average pressure tolerated in each group was 168 mmHg in glutaraldehyde, 128 mmHg in formaldehyde, 92 mmHg in Dakin's solution, 48 mmHg in ethylene oxide gas, and 26 mmHg in ethanol preserved group in relation to the control group of Ringer's 90 mmHg respectively. 3. Prolonged durability test was performed in the group of frame mounted xenograft tissue valve with 300 up-and-down motion tolerance test machine/min. There were no specific valve deformity or wearing in both 19, 21, and 23 mm valves at the end of 3 months (actually 15 months), and another 3 months durability test revealed minimal valve leakage during pressure tolerance test due to contraction deformity of the non-coronary cusp at the end of 6 months (actually 30 months) in the largest 23 mm group. 4. Histopathologic observation was focussed in three view points, endothelial cell lining, collagen and elastic fiber destructions in each preservation methods and long durable valvular tolerance test group. Endothel ial cell lining and collagen fiber were well preserved in the glutaraldehyde and formaldehyde treated group with minimal destruction of elastic fiber. In long durable tolerance test group revealed complete destruction of the endothelial cell lining with minimal destruction of the collagen and elastic fiber in 3 month and 6 month group in relation to the time and severity. In conclusion, porcine xenograft treated after the proposal of Carpentier in 1972 and preserved in the glutaraldehyde solution was the best method of collection, preservation and valve mounting. Pressure tolerance and valve motion tolerance test, also, revealed most satisfactory results in the glutaraldehyde preserved group.

  • PDF