• 제목/요약/키워드: Gas channel

검색결과 471건 처리시간 0.023초

고분자 전해질 연료전지에서 전기화학반응 열생성에 의한 열전달특성 (Heat Transfer by Heat Generation in Electrochemical Reaction of PEMFC)

  • 한상석;이필형;이재영;박창수;황상순
    • 전기화학회지
    • /
    • 제11권4호
    • /
    • pp.273-283
    • /
    • 2008
  • 고분자 전해질 연료전지의 구성요소인 기체 확산층(Gas Diffusion Layer)은 반응물을 채널에서 MEA로 전달하며 동시에 생성물을 MEA에서 채널로 전달하는 역할을 한다. 기체 확산층의 기체 투과도가 클수록 기체 확산층을 통과하는 반응기체의 양이 증가하여 고분자전해질 연료전지 성능이 향상되며 물질전달과 함께 열전달이 이루어지기 때문에 생성열에 의한 MEA의 온도상승을 억제해준다. 본 연구에서는 기체 확산층의 기체투과도를 달리하여 전기화학 반응과 열 생성을 고려한 3차원 수치해석 모델을 통해 동일 반응면적을 가지는 직선형 채널과 곡사형 채널에 대해 열전달 및 물질전달 특성을 분석하였다. 수치해석 결과 직선형 채널의 경우 곡사형 채널에 비해 기체 확산층의 기체투과도에 따른 성능 변화가 크지 않았다. 이러한 이유는 직선형 채널에서 주된 물질전달은 확산에 의해 이뤄지기 때문이다. 곡사형 채널의 경우 기체투과도가 높을수록 대류에 의한 물질전달로 원활한 물질전달이 이뤄졌기 때문에 연료전지 성능이 증가 되었으며 원활한 물질전달이 열전달을 촉진하여 MEA의 온도를 낮추었다. 또한 곡사형 채널에서는 기체투과도가 작아질수록 확산에 의한 물질 및 열전달 특성을 보여주었다.

고분자전해질형 연료전지의 유로 채널 모사를 통한 단일 액적의 불안정성 관찰 (Investigation on the Liquid Water Droplet Instability in a Simulated Flow Channel of PEMFC)

  • 김보경;김한상;민경덕
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.93-98
    • /
    • 2008
  • To investigate the characteristics of water droplet on the gas diffusion layer from both top-view and side-view of the flow channel, a rig test apparatus was designed and fabricated with prism attached plate. This experimental device is used to simulate the growth of single liquid water droplet and its transport process with various air flow velocity and channel height. The contact angle hysteresis and height of water droplet are measured and analyzed. It is found that droplet tends towards to be instable by decreasing channel height, increasing flow velocity or making GDL more hydrophobic. Also, the simplified force balance model matches with experimental data only in a restricted range of operating conditions and shows discrepancy as the air flow velocity and channel height increases.

인공 캐비티를 가진 히터를 이용한 가열면의 채널 높이가 풀비등시 기포성장에 미치는 영향에 대한 기초연구 (Effect of channel hight on Bubble growth under Saturated Nucleate Pool Boiling for Various Channel Height using Heater with Artificial Cavity)

  • 김정배;박문희;전우철
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.93-99
    • /
    • 2010
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R113 for various channel heights under saturated pool condition. A circular heater of 1mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of channel height on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, and bubble shapes. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

급속응고 Al-20 wt% Si 합금분말 압출재의 ECAP (Equal Channel Angular Pressing of Rapidly Solidified Al-20 wt % Si Alloy Powder Extrudates)

  • 윤승채;홍순직;서민홍;팜쾅;김형섭
    • 한국분말재료학회지
    • /
    • 제11권2호
    • /
    • pp.97-104
    • /
    • 2004
  • In this paper processing and mechanical properties of Al-20 wt% Si alloy was studied. A bulk form of Al-20Si alloy was prepared by gas atomizing powders having the powder size of 106-145 ${\mu}m$ and powder extrusion. The powder extrudate was subsequently equal channel angular pressed up to 8 passes in order to refine grain and Si particle. The microstructure of the gas atomized powders, powder extrudates and equal channel angular pressed samples were investigated using a scanning electron microscope and X-ray diffraction. The mechanical properties of the bulk sample were measured by compressive tests and a micro Victors hardness test. Equal channel angular pressing was found to be effective in matrix grain and Si particle refinement, which enhanced the strength and hardness of the Al-2OSi alloy without deteriorating ductility in the range of experimental strain of 30%.

Percolation Approach to the Morphology of Rigid-Flexible Block Copolymer on Gas Permeability

  • 박호범;하성룡;이영무
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1997년도 추계 총회 및 학술발표회
    • /
    • pp.69-70
    • /
    • 1997
  • Polyimides and related polymers, when synthesized from aromatic monomers, have generally rigid chain structures resulting in a low gas permeability. The rigidity of polymer chains reduces the segmental motion of chains and works as a good barrier against gas transport. To overcome the limit of use as materials of gas separation membranes due to low gas permeability, block copolymers with the incorporation of flexible segments like siloxane linkage and ether linkage have been studied. These block copolymers have microphase-separated structures composed of microdomains of flexible poly(dimethylsiloxane) or polyether segments and of rigid polyimides segments. In case of rigid-flexible block copolymers, the characteristics of both phases for gas permeation are of great difference. The permeation of gas molecules occurs favorably through microdomains of flexible segments, whereas those of rigid segments hinder the permeation of gas molecules. Accordingly the increase of content of flexible segments in a rigid polymer matrix will increase the gas permeability of the membrane linearly. However, this prediction does not satisfy enough many experimental results and in particular the drastic increase of the permeability is observed in a certain volume fraction. It was proposed that the gas transport mechanism is dominated by diffusion rather than gas solubility in a certain content of flexible phase if solution-diffusion mechanism is adopted. However, the transition from solubility-dependent to diffusion-dependent cannot be explained by the understanding of mechanism itself. Therefore, we consider an effective chemical path which permeable phase can form in a microheterogenous medium, and percolation concept is introduced to describe the permeability transition at near threshold where for the first time a percolation path occurs. The volume fraction of both phases is defined as V$_{\alpha}$ and V$_{\beta}$ in block copolymers, and the volume of $\beta$ phase in the threshold forming geometrically a traversing channel is defined as V$_{\betac}$. The formation mechanism of shortest chemical channel is schematically depicted in Fig. 1.

  • PDF

2차원 관내 유동에서 불활성 기체 제거과정의 직접 수치 해석 (DIRECT NUMERICAL SIMULATION OF IMMISCIBLE GAS BUBBLE DISPLACEMENT IN 2D CHANNEL)

  • 신승원
    • 한국전산유체공학회지
    • /
    • 제12권3호
    • /
    • pp.41-46
    • /
    • 2007
  • Dynamic behavior of immiscible gas bubble attached to the wall in channel flow plays very important role in many engineering applications. Special attention has been paid to micro direct methanol fuel cell(${\mu}$DMFC) where surface tension becomes dominant factor with minor gravitational effect due to its reduced size. Therefore, displacement of $CO_2$ bubble generating on a cathode side in ${\mu}$DMFC can be very difficult and efficient removal of $CO_2$ bubbles will affect the overall machine performance considerably. We have focused our efforts on studying the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We used Level Contour Reconstruction Method(LCRM) which is the simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

1.2MW급 산업용 가스터빈 원심압축기 개발(1)- 공력설계해석 - (Development of Centrifugal Compressors in an 1.2MW Industrial Gas Turbine(I)-Aerodynamic Design and Analysis-)

  • 조규식;이헌석;손정락
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2707-2720
    • /
    • 1996
  • The aerodynamic design of the two-stages of centrifugal compressors in an 1.2MW industrial gas turbine is completed with the application of numerical analyses. The final shape of an intake, the axial guide vanes and a return channel is determined using several interactions between design and two-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional design and prediction of aerodynamic performances for the compressors are performed by two different methods; one is a method with conventional loss models, and the other a method with the two-zone model. The combination methods of the Betzier curves generate three-dimensional geometric shapes of impeller blades which are to be checked with a careful change of aerodynamic blade loadings. The impeller design is finally completed by the applications of three-dimensional compressible turbulent flow solvers, and the effect of minor change of design of the second-stage channel diffuser is also studied. All the aerodynamic design results are soon to the verified by component performance tests of prototype centrifugal compressors.

배출가스 냉각장치 형상설계를 위한 수치해석 (Numerical Study for Configuration Design in the Exhaust Gas Cooling System)

  • 이석영
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.7-12
    • /
    • 2016
  • 본 연구는 냉각효과를 높이기 위해 냉각채널 형상에 대한 변수를 다루고 있다. 냉각효과가 증가하면 제조현장에 있는 공장에 의해 발생되는 배출가스량은 감소하게 된다. 이러한 문제를 해결하기 위해 효율적인 냉각시스템에 대한 설계가 필요하다. 따라서, 본 연구에서는 냉각채널을 냉각성능을 향상시키기 위해 수치분석을 수행하였다. 배플과 핀의 길이에 영향을 받는 열전달률은 수치해석에 의해 계산이 된다. 3차원 레이놀즈 평균 나비아스토크 방정식이 유동과 냉각채녈의 열전달을 계산하는데 사용되며 난류영역은 $k-{\varepsilon}$ 모델이 사용되었다.

헬리컬 채널내부의 3차원 희박기체유동 (Three-dimensional Rarefied Flows in Rotating Helical Channels)

  • 황영규;허중식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.625-630
    • /
    • 2000
  • Numerical and experimental investigations are peformed for the rarefied gas flows in pumping channels of a helical-type drag pump. Modern turbomolecular pumps include a drag stage in the discharge side, operating roughly in $10^{-2}{\sim}10Torr$. The flow occurring in the pumping channel develops from the molecular transition to slip flow traveling downstream. Two different numerical methods are used in this analysis: the first one is a continuum approach in solving the Navier-Stokes equations with slip boundary conditions, and the second one is a stochastic particle approach through the use of the direct simulation Monte Carlo(DSMC) method. The flow in a pumping channel is three-dimensional(3D), and the main difficulty in modeling a 3D case comes from the rotating frame of reference. Thus, trajectories of particles are no longer straight lines. In the Present DSMC method, trajectories of particles are calculated by integrating a system of differential equations including the Coriolis and centrifugal forces. Our study is the first instance to analyze the rarefied gas flows in rotating frame in the presence of noninertial effects.

  • PDF

간접 내부 개질형 용융탄산염 연료전지 anode 채널에서의 압력 강하 및 온도 조건 변경에 따른 유량 균일도에 관한 수치 해석적 연구 (Numerical analysis of the gas flow-rate uniformity in the anode flow channel of indirect internal reforming molten carbonate fuel cell (MCFC) under different pressure drop and temperature conditions)

  • 조준현;하태훈;김한상;민경덕;박종훈;장인갑;이태원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.127-130
    • /
    • 2009
  • The uniform gas distribution between anode channels of the indirect internal reforming type molten carbonate fuel cell (MCFC) is crucial design parameter because of the electric performance and the durability problems. A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold under different pressure drop and channel temperature conditions. The combined meshes consists of hexadral meshes in the channels and polyhedral meshes in the manifold are adopted and chemical reactions inside the MCFC system are not included because of computational difficulties associated with the size and geometric complexity of the system. Results indicate that the uniformity in flow-rate is in the range of $\pm$ 0.048 % between the anode channels when the pressure drop of anode channel is about 150 Pa. A gas flow-rate uniformity decreases as the pressure drop of anode channels decreases and as the temperature difference between indirect internal reforming (IIR) channels and anode channels increases.

  • PDF