• 제목/요약/키워드: Gas activation

검색결과 474건 처리시간 0.023초

Improved Sensitivity of an NO Gas Sensor by Chemical Activation of Electrospun Carbon Fibers

  • Kang, Seok-Chang;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • 제12권1호
    • /
    • pp.21-25
    • /
    • 2011
  • A novel electrode for an NO gas sensor was fabricated from electrospun polyacrylonitrile fibers by thermal treatment to obtain carbon fibers followed by chemical activation to enhance the activity of gas adsorption sites. The activation process improved the porous structure, increasing the specific surface area and allowing for efficient gas adsorption. The gas sensing ability and response time were improved by the increased surface area and micropore fraction. High performance gas sensing was then demonstrated by following a proposed mechanism based on the activation effects. Initially, the pore structure developed by activation significantly increased the amount of adsorbed gas, as shown by the high sensitivity of the gas sensor. Additionally, the increased micropore fraction enabled a rapid sensor response time due to improve the adsorption speed. Overall, the sensitivity for NO gas was improved approximately six-fold, and the response time was reduced by approximately 83% due to the effects of chemical activation.

기상 활성화법에 의한 대나무 활성탄 제조 (Production of Activated Carbon from Bamboo by Gas Activation Method)

  • 조광주;박영철
    • 에너지공학
    • /
    • 제13권2호
    • /
    • pp.166-172
    • /
    • 2004
  • The activated carbon was produced from Sancheong bamboo by steam and carbon dioxide gas activation methods. The carbonization of raw material was conducted at 90$0^{\circ}C$ and gas activation reactions were conducted with respect to various conditions. -activation temperature 750-90$0^{\circ}C$, the flow rate of steam 0.5-2g-$H_2O$/g-char$.$hr, the flow rate of carbon dioxide 5-30$m\ell$-$CO_2$/g-char-min and activation time 1-5 hr. The prepared activated carbons were measured yield, the adsorption capacity of iodine and methylene blue, BET specific surface area and pore size distribution. The adsorption capacity of iodine (680.5-1526.1 mg/g) and methylene blue (18.3-221.5 mg/g) increased with creasing activation temperature and activation time. The adsorption capacity of iodine and methylene blue increased with the activation gas quantity in the range of 0.5-1.5g-$H_2O$/g-charㆍhr, 5-18.9$m\ell$-Co$_2$/g-charㆍmin. But those decreased over those range due to the pore shrinkage. The steam activation method was superior in efficiency to carbon dioxide activation method.

Effect of Carbon Black Activation on Physicomechanical Properties of Butadiene-nitrile Rubber

  • Shadrinov, N.V.;Kapitonov, E.A.;Sokolova, M.D.;Okhlopkova, A.A.;Shim, Ee Le;Cho, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2891-2894
    • /
    • 2014
  • The effects of mechanical activation of carbon black on the processing and properties of butadiene nitrile rubber were studied. Mechanical activation of carbon black caused an improvement in the physical and mechanical properties of the butadiene-nitrile rubber, BNR-18AMN. The optimum activation time that would afford rubber with improved properties was established.

Encapsulation of Semiconductor Gas Sensors with Gas Barrier Films for USN Application

  • Lee, Hyung-Kun;Yang, Woo Seok;Choi, Nak-Jin;Moon, Seung Eon
    • ETRI Journal
    • /
    • 제34권5호
    • /
    • pp.713-718
    • /
    • 2012
  • Sensor nodes in ubiquitous sensor networks require autonomous replacement of deteriorated gas sensors with reserved sensors, which has led us to develop an encapsulation technique to avoid poisoning the reserved sensors and an autonomous activation technique to replace a deteriorated sensor with a reserved sensor. Encapsulations of $In_2O_3$ nanoparticles with poly(ethylene-co-vinyl alcohol) (EVOH) or polyvinylidene difluoride (PVDF) as gas barrier layers are reported. The EVOH or PVDF films are used for an encapsulation of $In_2O_3$ as a sensing material and are effective in blocking $In_2O_3$ from contacting formaldehyde (HCHO) gas. The activation process of $In_2O_3$ by removing the EVOH through heating is effective. However, the thermal decomposition of the PVDF affects the property of the $In_2O_3$ in terms of the gas reactivity. The response of the sensor to HCHO gas after removing the EVOH is 26%, which is not significantly different with the response of 28% in a reference sample that was not treated at all. We believe that the selection of gas barrier materials for the encapsulation and activation of $In_2O_3$ should be considered because of the ill effect the byproduct of thermal decomposition has on the sensing materials and other thermal properties of the barrier materials.

고분자 전해질막 연료전지의 활성화를 위한 CV 활성화법 (Application of CV Cycling to the Activation of the Polymer Electrolyte Membrane Fuel Cell)

  • 조기윤;정호영
    • 공업화학
    • /
    • 제23권5호
    • /
    • pp.445-449
    • /
    • 2012
  • 고분자 전해질막 연료전지의 대량 생산을 위하여 막-전극 접합체(MEA) 활성화 방법의 개발이 중요한 현안이다. 현재 개발된 MEA활성화 방법은 시간이 많이 소요됨으로 인해 수소의 사용량 또한 증가하여 연료전지의 상용화에 큰 걸림돌이 되고 있다. 통상적인 활성화 방법은 활성화 원리를 주로 전해질 수화 관점에서 이해하였다. 반면, 본 논문에서 제안된 순환전압전류(cyclic voltammetry, CV) 활성화 방법은 전해질 및 촉매적 관점에서 별도로 분리하여 이해하였다. 따라서 전해질 관점에서는 상대 습도 100%인 가습된 질소를 공급하여 전극 및 막의 전해질을 수화시키는 과정으로 구성되고, 촉매적 관점에서는 CV 사이클을 수행하여 백금 촉매에 흡착되어 있는 불필요한 오염물질, 또는 산화피막을 제거하는 과정으로 수행된다. CV 활성화법은 2.5 h 내에 활성화가 종료되어 활성화 시간을 크게 단축시킬 수 있을 뿐만 아니라, 수소 사용량도 기존 활성화 방법에 비하여 1/4 이하로 감소시킬 수 있어서 효과적인 연료전지 활성화 방법으로 제안하고자 한다.

Deep learning neural networks to decide whether to operate the 174K Liquefied Natural Gas Carrier's Gas Combustion Unit

  • Sungrok Kim;Qianfeng Lin;Jooyoung Son
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 추계학술대회
    • /
    • pp.383-384
    • /
    • 2022
  • Gas Combustion Unit (GCU) onboard liquefied natural gas carriers handles boil-off to stabilize tank pressure. There are many factors for LNG cargo operators to take into consideration to determine whether to use GCU or not. Gas consumption of main engine and re-liquefied gas through the Partial Re-Liquefaction System (PRS) are good examples of these factors. Human gas operators have decided the operation so far. In this paper, some deep learning neural network models were developed to provide human gas operators with a decision support system. The models consider various factors specially into GCU operation. A deep learning model with Sigmoid activation functions in input layer and hidden layers made the best performance among eight different deep learning models.

  • PDF

Improvement of gas sensing properties of carbon nanofibers based on polyacrylonitrile and pitch by steam activation

  • Kim, Jeongsik;Kim, Hyung-Il;Yun, Jumi
    • Carbon letters
    • /
    • 제24권
    • /
    • pp.36-40
    • /
    • 2017
  • Polyacrylonitrile/pitch nanofibers were prepared by electrospinning as a precursor for a gas sensor material. Pitch nanofibers were properly fabricated by incorporating polyacrylonitrile as an electrospinning supplement component. Polyacrylonitrile/pitch nanofibers were activated with steam at various temperatures followed by subsequent carbonization to make carbon nanofibers with a highly conductive graphitic structure. Steam activation was effective in facilitating gas adsorption onto the carbon nanofibers due to the increased surface area. The carbon nanofibers activated at $800^{\circ}C$ had a larger surface area and a lower micro pore fraction resulting in a higher variation in electrical resistance for improved CO gas sensing properties.

Induction of pro-inflammatory cytokines by 29-kDa FN-f via cGAS/STING pathway

  • Hwang, Hyun Sook;Lee, Mi Hyun;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • 제52권5호
    • /
    • pp.336-341
    • /
    • 2019
  • The cGAS-STING pathway plays an important role in pathogen-induced activation of the innate immune response. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) found predominantly in the synovial fluid of osteoarthritis (OA) patients increases the expression of catabolic factors via the toll-like receptor-2 (TLR-2) signaling pathway. In this study, we investigated whether 29-kDa FN-f induces inflammatory responses via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) pathway in human primary chondrocytes. The levels of cGAS and STING were elevated in OA cartilage compared with normal cartilage. Long-term treatment of chondrocytes with 29-kDa FN-f activated the cGAS/STING pathway together with the increased level of gamma-H2AX, a marker of DNA breaks. In addition, the expression of pro-inflammatory cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF-2), granulocyte colony-stimulating factor (G-CSF/CSF-3), and type I interferon ($IFN-{\alpha}$), was increased more than 100-fold in 29-kDa FN-f-treated chondrocytes. However, knockdown of cGAS and STING suppressed 29-kDa FN-f-induced expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ together with the decreased activation of TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), and inhibitor protein ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$). Furthermore, NOD2 or TLR-2 knockdown suppressed the expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ as well as decreased the activation of the cGAS/STING pathway in 29-kDa FN-f-treated chondrocytes. These data demonstrate that the cGAS/STING/TBK1/IRF3 pathway plays a critical role in 29-kDa FN-f-induced expression of pro-inflammatory cytokines.

함염소 폴리에틸렌의 열안정성에 관한 연구 (A Study on Thermal Stability of Chlorinated Polyethylene)

  • 설수덕;이내우
    • 한국가스학회지
    • /
    • 제1권1호
    • /
    • pp.120-126
    • /
    • 1997
  • 저밀도 폴리에틸렌 (LDPE)과 $25\%{\~}48\%$의 함염소 폴리에틸렌(CPE)에 대한 열분해상태를 20ml/min의 질소기류와 $4^{\circ}C{\~}20^{\circ}C$/min의 여러 가지 가열율에서 열중량분석으로 검토하였다. 반응의 열분해 활성화에너지값을 얻기 위하여 수학적인 방법으로는 미분법(Friedman)과 적분법(Ozawa)법이 사용되었다. 위의 방법으로 평가된 활성화에너지는 각각이 잘 일치하였고, 최고평균 활성화에너지는 71.72kcal/mol로 계산되었다. LDPE와 CPE의 열분해는 주쇄분해반응이고 실제 열분해곡선은 이론식과 잘 일치하는 것으로 사료된다.

  • PDF

Formation of SiC layer on Single Crystal Si Using Hot-Filament Reactor

  • Kim, Hong-Suk;Park, In-Hoon;Eun, Kwang-Yong;Baik, Young-Joon
    • The Korean Journal of Ceramics
    • /
    • 제4권1호
    • /
    • pp.25-27
    • /
    • 1998
  • The effect of gas activation on the formation of SiC layer on Si substrate using methane as a carbon source was investigated. Tungsten filaments, heated above 200$0^{\circ}C$, were used to activate the methane-hydrogen mixed gas. The dissociation of methane gas by the heated filament was enough to form a SiC layer successfully, which was very difficult without any activation. The SiC layer formed on the Si substrate was crystalline and nearly epitaxial as measured by X-ray diffraction. The SiC layer formed on the Si substrate was crystalline and nearly epitaxial as measured by X-ray diffraction. The stoichiometry was also close to 1:1. However, the characteristic of the SiC layer was dependent on the heat-treatment condition. The general behavior of the layer growth with the variables was discussed.

  • PDF