• Title/Summary/Keyword: Gas accident analysis

Search Result 307, Processing Time 0.024 seconds

The Risk Analysis for the Rail Transport of Explosives (폭약류의 철도수송에 따른 리스크 평가)

  • Lee, Jae-Hean;Song, Dong-Woo;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.33-39
    • /
    • 2011
  • This study presented quantitative risk analysis in case of transporting explosive materials by railway. Accident types were classified into accidents of in station and in transit. And the study presented an initial value of accident frequency through derailment accident and crushing one according to each type, and drew the results of accident frequency through event tree analysis. Damage impact evaluation used TNT equivalent method and probit analysis method. As the result of risk evaluation, railway transportation of explosive materials passing through areas which are high in population density is appeared to be able to cause a large number of personnel injury when occurring accidents. Specially, the accident of explosive transportation combined with petroleum was forecasted as easily resulting in large explosive accident. Consequently, there is a necessity to reduce consequences by decreasing passage through areas where are high in population density, and take measures for lessening the risks in case of transporting dangerous explosive materials.

Parameters Affecting the Consequences of the Unconfined Vapor Cloud Explosion Accident by the Release of Heavy Gas (무거운 가스의 누출에 의한 개방공간 증기운 폭발사고에서 사고결과에 미치는 매개변수의 영향)

  • Kim, Tae-Ok;Ham, Byeong-Ho;Cho, Ji-Hoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.3
    • /
    • pp.21-27
    • /
    • 2007
  • This paper analyses the effect of parameters on the consequences of the unconfined vapor cloud explosion accident (UVCE) by the release of heavy gas (xylene vapor). Simulation results showed that the overpresure was increased with the increase of the release hole diameter and with the decrease of the interested distance and the wind speed. While, the overpresure was not nearly affected by the release height, weather and environmental conditions. From the results of the consequence analysis and analysis of affecting the consequences of UVCE, the emergency plan should be established taking into account these parameters.

Safety Enhancement of LPG Terminal by LOPA & SIF Method (LOPA 및 SIF기법에 의한 LPG 인수기지의 안전성향상에 대한 연구)

  • Lee, Il Jae;Kim, Rae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.431-439
    • /
    • 2015
  • The methods which decrease the accident hazards of LPG(Liquefied Petroleum Gas) terminal on the basis of butane & propane storage tanks by applying HAZOP(Hazard and Operability), LOPA(Layer of Protection Analysis) and SIL(Safety Integrity Level) are suggested. The accident scenarios were derived by analyzing latent risks through the HAZOP. The scenarios which would have the big damage effect in accidents were selected and then LOPA was assessed by analyzing IPL(Independent Protection Layer) about the correspond accident scenarios. The improved methods were proposed on the basis of level of SIF(Safety Instrumented Functions) as a IPL considering satisfied condition of risk tolerance criteria($1.0{\times}10^{-05}/y$). In addition, The proposed IPLs were basis on the economic analysis. The effect of SIF as a IPL considering the changes of accident frequency was studied in case of the accident scenarios derived from the concerned process.

The Method of Consequence Analysis of the Unconfined Vapor Cloud Explosion Accident by the Continuous Release of Gas-Liquid Flow for the Small and Medium Size Enterprises(SMS) (기-액흐름 연속누출에 의한 개방공간 증기운 폭발사고를 중심으로 중.소규모 사업장을 위한 사고 영향평가 방법)

  • 장서일;이헌창;조지훈;김태옥
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.64-70
    • /
    • 2003
  • For the unconfined vapor cloud explosion(UVCE) accident by the continuous release of gas-liquid flow of various saturated liquids in a vessel at ground level, overpressures were estimated by TNT equivalency model with two estimation methods, such as UVCE I model based on a constant release time and UVCEII model based on a real travel time of vapor by dispersion and analyzed with various release conditions. As a simulation result the simple, easy, and correct method of evaluation of consequences of the UVCE accident was proposed by using consequences of UVCE I model and correlation equations for differences of overpressures between UVCE models, so that this evaluation method could be used easily in the small and medium size enterprises without using the dispersion model.

The Consequence Analysis for Unconfined Vapor Cloud Explosion Accident by the Continuous Release of Gas-Liquid Flow (기-액흐름 연속누출에 의한 개방공간 증기운 폭발사고의 영향평가)

  • 장서일;이헌창;김태옥
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • For the unconfined vapor cloud explosion accident by the continuous release of gas-liquid flow of various saturated liquids in a vessel at ground level, overpressures were estimated and analyzed with various release conditions and materials by TNT equivalency model with vapor dispersion. We found that at same release conditions, overpressure showed n-heptane > xylene > n-hexane > toluene > n-heptane > benzene, respectively and that overpressure was increased with increasing the hole diameter and the storage pressure, but it was increased with decreasing the wind speed, the interested distance, and the vessel thickness.

The Investigation of Accidental Case for LNG Terminal (LNG 생산기지의 사고사례 조사)

  • Ma, Y.W.;Lee, S.R.;Yoon, K.B.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.47-51
    • /
    • 2006
  • Safety issues for LNG(Liquified Natural Gas) terminal or LNG tank involve various concerns such as production/transportation at cryogenic temperature of $-160^{\circ}C$, large volume of handling, flammability and explosion risk. Hence, in designing an LNG terminal rigid safety criteria and mandatory requirements are unavoidable. Since known cases of LNG related accident are very few, careful study and root cause analysis of them are very important and provide precious information to increase safety level of the LNG terminal. In this paper most key accident cases were gathered and analysed to understand fundamental safety issues of LNG terminal to prevent further accident.

  • PDF

SAFETY STUDIES ON HYDROGEN PRODUCTION SYSTEM WITH A HIGH TEMPERATURE GAS-COOLED REACTOR

  • TAKEDA TETSUAKI
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.537-556
    • /
    • 2005
  • A primary-pipe rupture accident is one of the design-basis accidents of a High-Temperature Gas-cooled Reactor (HTGR). When the primary-pipe rupture accident occurs, air is expected to enter the reactor core from the breach and oxidize in-core graphite structures. This paper describes an experiment and analysis of the air ingress phenomena and the method fur the prevention of air ingress into the reactor during the primary-pipe rupture accident. The numerical results are in good agreement with the experimental ones regarding the density of the gas mixture, the concentration of each gas species produced by the graphite oxidation reaction and the onset time of the natural circulation of air. A hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR) Is being designed to be able to produce hydrogen by themo-chemical iodine-Sulfur process, using a nuclear heat of 10 MW supplied by the HTTR. The HTTR hydrogen production system is first connected to a nuclear reactor in the world; hence a permeation test of hydrogen isotopes through heat exchanger is carried out to obtain detailed data for safety review and development of analytical codes. This paper also describes an overview of the hydrogen permeation test and permeability of hydrogen and deuterium of Hastelloy XR.

Analysis of A Gas Explosion-Related State Compensation Case (가스폭발 사고와 관련된 국가배상 사례의 분석)

  • Lee, Euipyeong
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.44-59
    • /
    • 2020
  • This study analyzed a gas explosion accident. A gas smell from a underground coffee shop in the two-story building was reported to 119. A fire brigade was turned out, turned off the main valve of LPG gas cylinder on the roof, and checked the turning off of middle valve in the coffee shop. The fire brigade required a gas supplier and gas installer who arrived at the spot to take safety actions. Gas explosion occurred seven minutes after the fire brigade was withdrawn and two people died and 21 people were injured. A court decided that because the causes for gas explosion were not found, compensation responsibility could not be charged with the gas supplier, the gas installer, or Korea Gas Safety Corporation. In this reason, the court judged that only the fire brigade who was withdrawn without taking safety actions shall compensate victims or bereaved families. Therefore, fire brigades who turn out after a 119 report of a gas leak should take safety actions such as escaping people or preventing people's access and ventilating and be withdrawn when there is no possibility of fire or explosion.

Analysis of Safety Decrees for Gas Safety Management System and its Development (주요선진국의 가스기술기준 체제분석 및 제도개선 발전 모형)

  • 김봉진;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.2
    • /
    • pp.51-63
    • /
    • 2001
  • Korea gas industrial because of received LNG in 1987 was converted by the Gas Safety Management System in relation to city gas, LPG and LNG. Gas accident were caused by treatment problem on the supplier and user, on technical and use management mater, on facilities and goods, and included problem with gas safety connection system. This study is present standard application plan of each department to use planning gas technical standard and gas utilization standard of introduction model than statute for change of self-regulation management system and complicated regulation of examination center and order.

  • PDF

A Study on the Effect of New Technology for Gas Safety Management (신기술 도입이 가스안전관리에 미치는 영향에 관한 탐색적 연구)

  • Kim, Byung-Keun;Ha, Tae-Young;Cho, Hyun-Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.26-31
    • /
    • 2010
  • This paper aims to analyze the effect of the introduction of new technology and education for gas safety on the prevention of gas accidents. For the purpose of a study, inspections, safety tests and training programs conducted by KGS were examined and the gas accident data, installation rate of safety devices and training, inspection data for last 20 years were also collected and then Multiple regression analyses were performed by using SPSS. The results showed that in both of City Gas and LPG system, the installation rate of fusecocks and training programs were statistically meaningful for reducing the gas accident rate.