• 제목/요약/키워드: Gas absorption refrigeration

검색결과 44건 처리시간 0.017초

LNG추출과정과 냉열이용의 열역학적 해석 (Thermodynamic Analysis of the Extraction Process and the Cold Energy Utilization of LNG)

  • 이근식;장영수;노승탁
    • 설비공학논문집
    • /
    • 제7권1호
    • /
    • pp.120-131
    • /
    • 1995
  • Thermodynamic analysis of extraction process from the constant pressure LNG(Liquefied Natural Gas) vessel was performed in this study. LNG was assumed as a binary mixture of 90% methane and 10% ethane by mole fraction. The thermodynamic properties such as temperature, composition, specific volume and the amount of cold energy were predicted during extraction process. Pressure as a parameter ranges from 101.3kPa to 2000kPa. The result shows the peculiar phenomena for the LNG as a mixture. Both vapor and liquid extraction processes were investigated by a computer model. The property changes are negligible in the liquid extraction process. For the vapor extraction process, the temperature in the vessel increases rapidly and the extracted composition of methane decreases rapidly near the end of extracting process. Specific volume of vapor has the maximum and that of liquid has the minimum during the process. When pressure is increased, specific volume of vapor decreases and that of liquid increases. It was found that specific volume of vapor phase had a major effect on the heat absorption at constant pressure during vapor extraction process. If the pressure of the vessel increases, the total cold energy which can be utilized from LNG decreased.

  • PDF

LCC 분석에 의한 하천수 미활용에너지 이용시스템의 경제성 평가 (Life-Cycle Analysis of the River Water Unutilized Energy System)

  • 박일환;윤형기;장기창;박준택;박성룡
    • 설비공학논문집
    • /
    • 제17권6호
    • /
    • pp.596-604
    • /
    • 2005
  • This paper presents the work on evaluating the LCC (Life-Cycle Cost) of a heat pump system as unutilized energy system. The river water as an unutilized energy source was used for the heat source of heat pump system. LCC analysis is a concrete method for evaluating the economical efficiency of energy facilities of building. The present case study shows an example of adequate use of the LCC analysis on a heat pump system and conventional gas boiler and refrigerator for building heat supply. A life cycle of 20 years was used to calculated net present value of energy cost. Over a 20 year life cycle, the energy cost could be reduced by 612 million won if a heat pump system were used instead of a conventional boiler and an absorption refrigerator.

산업폐수열원 이용 증기압축식/흡수식 하이브리드 히트펌프 시스템의 시뮬레이션 (Simulation of Compression/Absorption Hybrid Heat Pump System using Industrial Wastewater Heat Source)

  • 백영진;박성룡;장기창;라호상
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1117-1125
    • /
    • 2004
  • In this study, in order to utilize the waste heat of industrial wastewater in the range of the relatively low temperature of 40~5$0^{\circ}C$ as a heat source, a hybrid heat pump system was considered by computer simulation method. In the simulation, an absorber, desorber and solution heat exchanger were modelled by UA values while a compressor and pump performance were specified by an isentropic efficiency. Simulation results show that the performance of hybrid heat pump can be up to 80% higher than that of conventional R134a heat pump when it makes a process hot water of 9$0^{\circ}C$ while the wastewater is cooled down to 2$0^{\circ}C$. As the absorber pressure increases, the system performance and deserter pressure increase with a favorable effect of a compressor discharge gas temperature drop.

부산지역 학교 기숙사에서의 소형열병합발전 시스템의 경제성 분석 (Economic Investigation of Small Scale Cogeneration System in a School Dormitory of Busan Region)

  • 송재도;구본철;강율호;박종규;이재근;안영철
    • 설비공학논문집
    • /
    • 제24권9호
    • /
    • pp.657-662
    • /
    • 2012
  • The cogeneration system can operate at efficiencies greater than those achieved when heat and power are produced in separate. The optimal system can be determined by selecting the auxiliary system combined with cogeneration system. In the present study, economic investigation has been conducted with the cogeneration electric heat pump(EHP) system and the cogeneration absorption chiller(AC) system to install in a school dormitory. To analyze life cycle cost(LCC), cost items such as initial investment costs, annual energy costs and maintenance costs of each system have been considered. The initial investment cost is referred to the basis of estimated costs, and annual energy costs such as the electric power and gas consumption are based on the data in a school dormitory. LCC is evaluated with the present worth method. Considering investigated results, the initial investment cost of the cogeneration EHP system is more profitable about 24% than that of the cogeneration AC system. The energy cost of the cogeneration EHP system is more profitable about 8% than the cogeneration AC system. The LCC shows that the cogeneration EHP system is the most effective system in the school dormitory.