• Title/Summary/Keyword: Gas Station

Search Result 475, Processing Time 0.028 seconds

Study on Application of USN in CNG Station (CNG 충전소의 USN 적용에 관한 연구)

  • Lee, Heon-Seok;Lee, Dong-Heuk;Yang, Jae-Mo;Oh, Jeong-Seok;Shin, Jun-Ho;Yoo, Jin-Hwan;Park, Chul-Hwa;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.56-61
    • /
    • 2011
  • For the prevention of air pollution, the CNG vehicles have been supplied since 2006. The spread of CNG vehicles has decreased the level of air pollution. Declared goals of Korean Ministry of Environment (ME) are to supply CNG city bus by 90% by 2012. CNG bus explosion has exacerbated commuters' safety concerns, it has caused the barrier to the installation of CNG station. In this study, the sensor was installed for the safety improvement of CNG station. When new sensors were installed, a problem was encountered by a line of communication. To solve the installation problem, we carried out the monitoring of data communication network by USN technology.

A Study on the Automatic Sensing Device for Gas Leakage of Cooling Plate Using the Microprocessor System

  • Wang, Jee-Seok;Yoon, Hee-Jong;Kang, Ki-Seong;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.329-334
    • /
    • 2011
  • The cooling water circulation plates had been used to drop the temperature of refractory outside shell of common cooling system by using cooling plate or stave type. When they are attacked by surrounding gas, they are corroded and the water flows in the refractory due to leakage of water. So, the life of refractory material is shortened and changed due to the worse conditions of cooling system. The automatic sensing device for water leakage of cooling plate is developed to check the position of trouble by using the microprocessor system when cooling water leak and gas are flowed into the cooling plate through the leakage position. The flowed gas is detected in the micro-process system which delivers the detected position of cooling plate or stave to main control room through the wireless-radio relay station. This system can be possible to detect the position of cooling plate or stave against the water leakage part immediately and then deliver the signal to main control room by using the microprocessor system and wireless-radio relay station. This system will be developed in changing the working condition from manual system to unmanned auto alarm system.

Determination of Optimum Investment level for Safely Management by Process Risk Assessment at Gas Governor Station (가스공급기지에서 공정 위험성 평가에 의한 최적 안전관리 투자수준 결정)

  • Kim Tae-Ok;Jang Seo-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.1-6
    • /
    • 2003
  • This study has suggested a decision method which determine optimum investment level for safety management by process risk assessment at gas governor station. Hazard and operability study(HAZOP), fault tree analysis(FTA) and consequence analysis(CA) were carried out and potential accident cost and benefit for safety management were estimated. As a result, we could be found the trend of safety cost and benefit by the nonlinear regression method and could be determined the optimum investment level for safety management from analysis of safety management cost and potential accident cost.

  • PDF

A Model of Location Decisions of Natural Gas Filling Station Considering Spatial Coverage and Travel Cost (공간적 접근성 및 통행비용을 고려한 천연가스 충전소 최적 입지선정 모형)

  • Yu, Jeong-Whon;Lee, Mu-Young;Oh, Sei-Chang
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.145-153
    • /
    • 2008
  • This study proposes a facility location model in consideration of spatial coverage and travel cost as an effort to make objective and effective decisions of natural gas filling stations. The proposed model is developed for fixed stations and consists of two stages. The first stage employs a heuristic algorithm to find a set of locations which satisfy the spatial coverage constraints determined by the maximum travel distance between the filling stations and bus depots. In the second stage, the optimal location of filling stations is determined based on the minimum travel cost estimated by using a modified transportation problem as well as the construction and maintenance costs of the filling stations. The applicability of the model is analyzed through finding the optimal location of filling stations for the city of Anyang, a typical medium-sized city in metropolitan Seoul, based on the demand of natural gas buses. This study is expected to help promote the spread of natural gas buses by providing a starting point of a objective and reasonable methodological perspective to address the filling station location problem.

A Study on Reliability Analysis and Quantitative Risk Analysis for Liquefied Petroleum Gas Station (LPG 충전시설에 대한 신뢰도 분석과 정량적 위험성 분석에 관한 연구)

  • Kim In-Won;Jin Sang-Hwa;Kim Tea-Woo;Kim In-Tae;Yeo Yeong-Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.40-48
    • /
    • 2001
  • For a Liquified Petroleum Gas(LPG) station, the reliability analysis, such as Fussell-Vesely importance, risk decrease factor and risk increase factor, was carried out and the risk ranks of events were determined. In order to confirm the degree of the risks identified in the reliability analysis, the quantitative risk analysis was done for the equipments which had the large values of risk ranks. As a result of the importance analysis for the LPG station, the external event was identified as the most riskful event. The defect of construction structure and the pipe corrosion were riskful as well. The result of quantitative risk analysis showed that the length of 46.3 meters were estimated to damage the process equipments by the thermal flux from the catastrophic rupture of storage tank in Boiling Liquid Expanding Vapor Explosion.

  • PDF

Simulation for the Evaluation of Reforming Parameter Values of the Natural Gas Steam Reforming Process for a Small Scale Hydrogen-Fueling Station (소규모 수소 충전소용 천연가스 수증기 개질공정의 수치모사 및 공정 변수 값의 산정)

  • Lee, Deuk-Ki;Koo, Kee-Young;Seo, Dong-Joo;Seo, Yu-Taek;Roh, Hyun-Seog;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.12-25
    • /
    • 2007
  • Numerical simulation of the natural gas steam reforming process for on-site hydrogen production in a $H_2$ fueling station was conducted on the basis of process material and heat balances. The effects of reforming parameters on the process efficiency of hydrogen production were investigated, and set-point values of each of the parameters to minimize the sizes of unit process equipments and to secure a stable operability of the reforming process were suggested. S/C ratio of the reforming reactants was found to be a crucial parameter in the reforming process mostly governing both the hydrogen production efficiency and the stable operability of the process. The operation of the process was regarded to be stable if the feed water(WR) as a reforming reactant could evaporate completely to dry steam through HRSG. The optimum S/C ratio was 3.0 where the process efficiency of hydrogen production was maximized and the stable operability of the process was secured. The optimum feed rates of natural gas(NGR) and WR as reforming reactants and natural gas(NGB) as a burner fuel were also determined for the hydrogen production rate of $27\;Nm^3/h$.

Reliability enhancement of safety coupling for LPG car filler in LPG station (LPG 자동차 충전기 세이프티커플링의 신뢰성향상 연구)

  • Lyu Geun-Jun;Kim Hyun-Gi;Kwon Jung-Rock;Cho Ji-Hwan;Park Hwa-soo
    • 한국가스학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.121-126
    • /
    • 2003
  • LPG차량이 연료충전중에 운전자 부주의로 오발진하는 경우 설비파손 방지를 위해 자동차와 디스펜서의 설치한 세이프티커플링의 주요 사고원인은 안전장치인 커플링이 분리되지 않아 발생하고 있으며, 사고로 설비파손으로 인한 부수적인 위험도가 크다 따라서 본 고에서는 세이프티커플링이 분리되지 않는 원인을 파악하기 위하여 노후시료의 분리하중, 열화물질의 분석 및 기구적 원인을 분석하였으며, 특히 커플링이 각도에 의해 분리가 되지 않는 조건을 각 부정합 손상으로 정의하고 안전장치로서 제 기능을 수행할 수 있는 방법에 대하여 고찰하였다.

  • PDF

Accident Risk Consequences Analysis for Operating a Hydrogen Refueling Station in Urban Railway Site (도심 내 철도부지 수소충전소 운영을 위한 사고 위험 영향 분석)

  • Jae Yong Lee;Deokkyu Youn;Chul-Ho Lee;Jaeyoung Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.70-77
    • /
    • 2023
  • In response to climate change, each country is proposing a goal to reduce greenhouse gases in its energy supply and demand plan, and the use of hydrogen gas is a topic that is always prioritized as an energy resource for implementation. A popular way to use this hydrogen gas is the use of hydrogen fuel cell vehicles, and expansion of hydrogen charging stations is essential for using these hydrogen fuel cell vehicles. However, there are several limitations to the expansion of hydrogen refueling stations, the most representative of which is resident acceptance. Most of the hydrogen charging stations currently built in Korea are located in the outskirts with low population density, so the inconvenience to hydrogen fuel cell vehicle users has not been resolved, and as a result, there has been no progress in the spread of hydrogen fuel cell vehicles. In this paper, we analyzed the consequences of accident damage to determine the risks of constructing a hydrogen charging station on a railroad site frequently used by citizens. The target hydrogen charging station site was a railroad depot in Busan, and there are trains, national highways, and commercial facilities around this site. Assuming the worst-case scenario, we would like to consider the safety of the hydrogen refueling station site by analyzing the area affected by the accident and its consequence.