• 제목/요약/키워드: Gas Permeability

Search Result 534, Processing Time 0.022 seconds

A Study on the Fouling of Ultrafiltration Membranes Used in the Treatment of an Acidic Solution in a Circular Cross-flow Filtration Bench (순환식 막 모듈 여과장치를 이용한 산성용액의 수처리 공정 시 발생하는 한외여과막 오염에 관한 연구)

  • Kim, Nam-Joon;Choi, Chang-Min;Choi, Yong-Hun;Lee, Jun-Ho;Kim, Hwan-Jin;Park, Byung-Jae;Joo, Young-Kil;Kang, Jin-Seok;Paik, Youn-Kee
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.252-260
    • /
    • 2009
  • The effects of the treatment of an acidic solution at pH 2 on polyacrylonitrile ultrafiltration (UF) membranes were investigated using a circular cross-flow filtration bench with a membrane module. A substantial reduction in the membrane permeability was observed after 80 hours' treatment of the acidic solution. In addition, the analyses of the sample solutions by ultraviolet/visible absorption spectroscopy and gas chromatography/mass spectrometry (GC/MS), which were taken from the feed tank as a function of the treatment time, showed that a new organic compound was produced in the course of the treatment. From a thorough search of the mass spectral library we presumed the new compound to be 1,6-dioxacyclododecane-7,12-dione (DCD), one of the well-known additives for polyurethane. Based on further experimental results, including the scanning electron microscope (SEM) images and the solid-state NMR spectra of the membranes used for the treatment of the acidic solution, we suggested that the decrease of the permeate flux resulted not from the deformation of the membranes, but from the fouling by DCD eluted from the polyurethane tubes in the filtration bench during the treatment. Those results imply that the reactivity to an acidic solution of the parts comprising the filtration bench is as important as that of the membranes themselves for effective treatments of acidic solutions, for efficient chemical cleaning by strong acids, and also in determining the pH limit of the solutions that can be treated by the membranes.

Perfluoropolymer Membranes of Tetrafluoroethylene and 2,2,4Trifluofo- 5Trifluorometoxy- 1,3Dioxole.

  • Arcella, V.;Colaianna, P.;Brinati, G.;Gordano, A.;Clarizia, G.;Tocci, E.;Drioli, E.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.39-42
    • /
    • 1999
  • Perfluoropolymers represent the ultimate resistance to hostile chemical environments and high service temperature, attributed to the presence of fluorine in the polymer backbone, i.e. to the high bond energy of C-F and C-C bonds of fluorocarbons. Copolymers of Tetrafluoroethylene (TEE) and 2, 2, 4Trifluoro-5Trifluorometoxy- 1, 3Dioxole (TTD), commercially known as HYFLON AD, are amorphous perfluoropolymers with glass transition temperature (Tg)higher than room temperature, showing a thermal decomposition temperature exceeding 40$0^{\circ}C$. These polymer systems are highly soluble in fluorinated solvents, with low solution viscosities. This property allows the preparation of self-supported and composite membranes with desired membrane thickness. Symmetric and asymmetric perfluoropolymer membranes, made with HYFLON AD, have been prepared and evaluated. Porous and not porous symmetric membranes have been obtained by solvent evaporation with various processing conditions. Asymmetric membranes have been prepared by th wet phase inversion method. Measure of contact angle to distilled water have been carried out. Figure 1 compares experimental results with those of other commercial membranes. Contact angles of about 120$^{\circ}$for our amorphous perfluoropolymer membranes demonstrate that they posses a high hydrophobic character. Measure of contact angles to hexandecane have been also carried out to evaluate the organophobic character. Rsults are reported in Figure 2. The observed strong organophobicity leads to excellent fouling resistance and inertness. Porous membranes with pore size between 30 and 80 nanometers have shown no permeation to water at pressures as high as 10 bars. However high permeation to gases, such as O2, N2 and CO2, and no selectivities were observed. Considering the porous structure of the membrane, this behavior was expected. In consideration of the above properties, possible useful uses in th field of gas- liquid separations are envisaged for these membranes. A particularly promising application is in the field of membrane contactors, equipments in which membranes are used to improve mass transfer coefficients in respect to traditional extraction and absorption processes. Gas permeation properties have been evaluated for asymmetric membranes and composite symmetric ones. Experimental permselectivity values, obtained at different pressure differences, to various single gases are reported in Tab. 1, 2 and 3. Experimental data have been compared with literature data obtained with membranes made with different amorphous perfluoropolymer systems, such as copolymers of Perfluoro2, 2dimethyl dioxole (PDD) and Tetrafluorethylene, commercialized by the Du Pont Company with the trade name of Teflon AF. An interesting linear relationship between permeability and the glass transition temperature of the polymer constituting the membrane has been observed. Results are descussed in terms of polymer chain structure, which affects the presence of voids at molecular scale and their size distribution. Molecular Dyanmics studies are in progress in order to support the understanding of these results. A modified Theodoru- Suter method provided by the Amorphous Cell module of InsightII/Discover was used to determine the chain packing. A completely amorphous polymer box of about 3.5 nm was considered. Last but not least the use of amorphous perfluoropolymer membranes appears to be ideal when separation processes have to be performed in hostile environments, i.e. high temperatures and aggressive non-aqueous media, such as chemicals and solvents. In these cases Hyflon AD membranes can exploit the outstanding resistance of perfluoropolymers.

  • PDF

Effect of Temperature and Gas Permeability of Functional Packing Films on Storability of Fresh-cut Salicornia herbacea Classified by Size (저장온도와 기능성 필름의 기체 투과도가 다양한 크기의 퉁퉁마디 신선편이의 저장성에 미치는 영향)

  • Baek, Jun Pill;Lee, Han Jong;Choi, In-Lee;Jung, Hyun Jin;Son, Jin Sung;Kim, Il Seop;Jeong, Cheon Soon;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.175-181
    • /
    • 2013
  • These studies were identified the effect of four types of non-perforated breathable (NPB) packing film and three sizes on storage ability of fresh-cut for ready to eat packaging at $5^{\circ}C$ for 25 days and $10^{\circ}C$ for 15 days storage in Salicornia herbacea. The fresh weight loss was less than 2% in every films at $5^{\circ}C$ condition after 25 days storage, and the $10^{\circ}C$ also had same result on 15 days storage except 100,000 cc NPB film. Compare with storage after 15 days, storage condition at $5^{\circ}C$ had shown better result under the 1% fresh weight loss rate. The 5,000 cc and $5^{\circ}C$ condition had been shown the characteristics of MA packaging in carbon dioxide and oxygen concentrations. The ethylene concentration in vacuum film was higher 10 to 100 times than in NPB film treatments during storage. But ethylene concentration was not statistically significant differences among size treatments. Every conditions had been measured the anti-oxidant activity by DPPH method after storage at $5^{\circ}C$ for 25 days and $10^{\circ}C$ for 15 days. S. herbacea at $5^{\circ}C$ had been more than twice of activity compare with that at $10^{\circ}C$. 100,000 cc NPB film had been higher contents of anti-oxidant activity at $5^{\circ}C$ and $10^{\circ}C$. As the fresh-cut sizes, 3 cm and 5 cm sizes had changed depending on film types but 10 cm were not effected by the film types in the DPPH activity. When panel test had been tried to measure the visual quality and off-flavor after storage, $5^{\circ}C$ with a filme of 5,000 cc treatment had established higher value than other treated conditions. As these results, it's may be suggested that the $5^{\circ}C$ with 5,000 cc non-perforated breathable film for MA storage in Salicornia herbacea at fresh cut distribution system. Fresh cut size 10 cm with 100,000 cc NPB film also had the good quality for 15 dyas storage at $10^{\circ}C$, and this result can be applied for short term distribution system in Korea.

Dysfunction of Autonomic Nervous System in Patients with Chronic Obstructive Pulmonary Diseases (만성 폐쇄성 폐질환 환자의 자율신경 장애)

  • Shin, Kyeong-Cheol;Lee, Kwan-Ho;Park, Hye-Jung;Shin, Chang-Jin;Lee, Choong-Ki;Chung, Jin-Hong;Lee, Hyun-Woo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.3
    • /
    • pp.317-326
    • /
    • 1999
  • Background: Neural control of airway function is through parasympathetic, sympathetic and non-adrenergic, non-cholinergic mechanisms. The autonomic nervous system controls the airway smooth muscle tone, mucociliary system, permeability and blood flow in the bronchial circulation and release of mediators from the mast cells and other inflammatory cells. The cardiovascular and respiratory autonomic efferent fibers have a common central origin, so altered cardiovascular autonomic reflexes could reflect the altered respiratory autonomic status. Therefore, we performed this study to assess the autonomic abnormality and determine the correlating factors of severity of autonomic neuropathy in patients with chronic obstructive pulmonary disease(COPD) using easily reproducible cardiovascular autonomic reflex function test. Method: The study included 20 patients with COPD and 20 healthy persons obtained on Health Promotion Center in Yeungnam university hospital. All the patients had history and clinical features of COPD as defined by the American Thoracic Society. Any patients with myocardial ischemia, cardiac arrythmia, hypertension, central or peripheral nervous system disease, diabetes mellitus, or any other diseases known to produce autonomic neuropathy, has excluded. The autonomic nervous system function tests included three tests evaluating the parasympathetic system and two tests evaluating the sympathetic system. And also all subjects were subjected to pulmonary function test and arterial blood gas analysis. Results: Autonomic dysfunction was more commonly associated with patients with COPD than healthy person The parasympathetic dysfunction was frequent in patient with COPD, but sympathetic dysfunction seemed preserved. The severity of parasympathetic dysfunction in patients with COPD was correlated with the degree of duration of disease, smoking, reductions in the value of $FEV_1$ and FVC, and arterial hypoxemia but no such correlation existed for age, type of COPD, $FEV_1$/FVC, or $PaCO_s$. Conclusion: There is high frequency of parasympathetic dysfunction associated with COPD and the parasympathetic abnormality in COPD is increased in proportion to severity of airway disease. In COPD, parasympathetic dysfunction probably does not the cause of disease, but it may be an effect of disease progression.

  • PDF