• Title/Summary/Keyword: Gas Metal Arc

Search Result 305, Processing Time 0.027 seconds

The Effects of Welding Process Parameters on Weld bead Width in GMAW Processes (GMAW 공정 중 용접 변수들이 용접 폭에 미치는 영향에 관한 연구)

  • 김일수;권욱현;박창언
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.33-42
    • /
    • 1996
  • In recent years there has been a significant growth in the use of the automated and/or robotic welding system, carried out as a means of improving productivity and quality, reducing product costs and removing the operator from tedious and potentially hazardous environments. One of the major difficulties with the automated and/or robotic welding process is the inherent lack of mathematical models for determination of suitable welding process parameters. Partial-penetration, single-pass bead-on-plate welds were fabricated in 12mm AS 1204 mild steel flats employing five different welding process parameters. The experimental results were used to develop three empirical equations: curvilinear; polynomial; and linear equations. The results were also employed to find the best mathematical equation under weld bend width to assist in the process control algorithms for the Gas Metal Arc Welding(GMAW) process and to correlate welding process parameters with weld bead width of bead-on-plates deposited. With the help of a standard statistical package program. SAS, multipe regression analysis was undertaken for investigating and modeling the GMAW process, and significance test techniques were applied for the interpretation of the experimental data.

  • PDF

A Study on Bead Height Control of GMAW by Short Circuit Time Ratio (단락시간비를 이용한 GMAW의 비드 높이 제어에 관한 연구)

  • 감병오;조상명;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.53-59
    • /
    • 2002
  • This paper shows the experimental results controlling the height of surface and back bead in GMAW by analyzing the unexpected gaps between base metals produced in welding and by controlling welding velocity due to the variation of the gap between base metals in thin-plate welding. The back bead behavior and burn-through in I-type butt joint $CO_2$ welding of thin mild steel are analyzed in the views of short circuit time ratio and short circuit frequency. It is shown through experimental consideration that the short circuit time ratio method is more reasonable than the short circuit frequency method in analyzing the formulation of back bead under changing the gap between base metals. Based on the these results, welding manipulator is designed so as to satisfy the bead height control in real time by measuring the short circuit time ratio. To show the effectiveness of the developed bead formulation control system, the experiment is implemented under two welding conditions such as increasing gap from 0mm to 0.8mm and gradually increasing gap from 0mm to 1.2mm. The experimental results show that the bead formulation can be controlled uniformly in spite of the variation of the gap between base metals.

Analysis of Microstructure and Mechanical Properties According to Heat Treatment Conditions in GMAW for Al 6061-T6 Alloy (Al 6061-T6 합금의 MIG 용접 후 열처리조건에 따른 미세조직 및 기계적 물성 분석)

  • Kim, Chan Kyu;Cho, Young Tae;Jung, Yoon Gyo;Kang, Shin Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.34-39
    • /
    • 2016
  • Recently, aluminum alloy has used various industry, such as automobile, shipbuilding and aircraft because of characteristics of low density and high corrosion resistance. Al 6061-T6 is heat treatment materials so it has high strength and mostly used for assembly by mechanical fastening such as a bolting and riveting. In GMA (Gas Metal Arc) welding of alloy, some defects which are hot cracking, porosity, low-mechanical properties and large heat affected zone is generated, because of high heat conductivity. It reduces mechanical properties. In this study, the major factor effected on properties are analyzed after welding in Al 6061-T6 in GMAW, then optimize heat treatment conditions. Plate of Al 6061-T6 with a thickness of 12 mm is welded in V groove and applied welding method is butt joint. Mechanical properties and microstructure are analyzed according to heat treatment condition. Tensile strength, microstructure and Hardness are evaluated. Result of research appears that Al 6061-T6 applied heat treatment show outstanding mechanical properties.

A Case Study on Explosive Demolition of Boiler Building of Steel Frame Structure (보일러동 철골구조물 발파해체 시공사례)

  • Park, Hoon;Nam, Sung-Woo;Noh, You-Song;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.66-76
    • /
    • 2022
  • Recently, the demand for the dismantling of old industrial complexes has been increasing, and the construction of restoring the dismantled industries to their original natural environment is underway. In this case, the felling method was applied to the explosive demolition method to dismantle a large steel frame structure in an old industrial complex. We used a charging container to cut the steel frame structure that generates a metal jet. The thickness of the thick steel structure in the blasting section was controlled by gouging which a method of digging deep groove by gas and oxygen flame or arc thermal. As a result of the explosive demolition, the steel frame structure collapsed precisely according to the estimated direction. The explosive demolition was completed without causing any damage to the surrounding facilities.

Effects of Post Weld Heat Treatment on Microstructures of Alloy 617 and 263 Welds for Turbines of HSC Power Plants (HSC발전소 터빈용 초내열합금 Alloy 617 및 263 용접부의 미세조직에 미치는 후열처리의 영향)

  • Kim, Jeong Kil;Shim, Deog Nam;Park, Hae Ji
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.52-60
    • /
    • 2016
  • Recently nickel based superalloys are extensively being regarded as the materials for the steam turbine parts for hyper super critical (HSC) power plants working at the temperature over $700^{\circ}C$, since the materials have excellent strength and corrosion resistance in high temperature. In this paper, alloy 617 of solution strengthened material and alloy 263 of ${\gamma}^{\prime}$-precipitation strengthened material were prepared as the testing materials for HSC plants each other. Post weld heat treatment (PWHT) was conducted with the gas tungsten arc (GTA) welded specimens. The microstructure of the base metals and weld metals were investigated with Electron Probe Micro-Analysis (EPMA) and Scanning Transmission Electron Microscope (STEM). The experimental results revealed that Ti-Mo carbides were formed in both of the base metals and segregation of Co and Mo in both of the weld metals before PWHT and PWHT leaded to precipitation of various carbides such as Mo carbides in the specimens. Furthermore, fine ${\gamma}^{\prime}$ particles, that were not precipitated in the specimens before PWHT, were observed in base metal as well as in the weld metal of alloy 263 after PWHT.

A study on the airborne concentration of welding fume for some manufacturing industries (일부 업종의 용접흄 분석 및 폭로농도에 관한 연구)

  • Byeon, Sang-Hoon;Park, Seung-Hyun;Kim, Chang-Il;Park, In-Jeong;Yang, Jeong-Sun;Oh, Se-Min;Moon, Young-Hahn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.2
    • /
    • pp.172-183
    • /
    • 1995
  • The airborne concentrations of the welding fumes produced during $CO_2$ arcwelding process at shipbuilding, shiprepairing, container manufacturing and car accessary manufacturing industry were investigated. The effects how much reduced the welding fume were checked when the portable fan was used. The results were as follows; 1.The geometric mean of welding fume concentration in shipbuilding factory was $10.05mg/m^3$. This exposure concentration was higher than other 3 manufacturing industries at 95% confidence level. 2. The sampling filters for welding fume could be digested with acid within 1 hour by microwave oven. The recoveries for investigated metal elements were all over 95%. 3. The optimal wavelength could be selected for the simultaneous analysis of 8 metal elements by ICP(Inductively Coupled Plasma). 4. Noxious gases($O_1,NO_2$) produced during $CO_1$ gas arc welding process were detected that the concentration of ozone($O_1$) was less than 0.01 ppm and that of nitrogen dioxide($NO_2$) was 0.01-0.03 ppm. 5. The geometric mean of welding fume particle diameter was $1.26{\mu}m$ and geometric standard deviation was 1.51 for the counts when particle an analyzer(ELZONE) had been used. 6. When the portable fan had been used,the reduced percent of total welding fume for workers was about 47.8% when portable fan was applied to blow and 71.7% when to exhaust.

  • PDF

A Study of Weldability and Welded Joint Performance on the Gas Shield Arc Welding (FCAW) of SM490TMC Steel Plate (120mm) (SM490TMC 극후판(120mm) 강재의 가스실드아크용접(FCAW)을 이용한 용접성 및 이음성능에 관한 연구)

  • Kim, Sung Bae;Hong, Hyung Ju;Choi, Young Han;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.455-465
    • /
    • 2017
  • To figure out the weldability and welded joint performance on the FCAW of SM490TMC 120mm, several specimens were manufactured and 10 kinds of experiments were implemented. The result of the weld zone chemical composition test, weld metal tensile test, weld zone tensile test, and weld zone impact test has satisfied the KS. Especially, the weld zone tensile test result shows the base metal fracture, which means the weld zone performs enough required performance. In addition, the results of the weld zone bending test, hardness test, macroscopic test, microscopic test, and the maximum hardness in HAZ were showing that the FCAW weld zone has fine quality.

An Experimental Study on Optimizing for Tandem Gas Metal Arc Welding Process (탄뎀 가스메탈아크 용접공정의 최적화에 관한 실험적 연구)

  • Lee, Jongpyo;Kim, Illsoo;Lee, Jihye;Park, Minho;Kim, Youngsoo;Park, Cheolkyun
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.22-28
    • /
    • 2014
  • To enhance productivity and provide high quality production material in a GMA welding process, weld quality, productivity and cost reduction affects the number of process variables. In addition, a reliable welding process and conditions must be implemented to reduce weld structure failure. In various industries the welding process mathematical model is not fully formulated for the process parameter and on the welding conditions, therefore only partial variables can be predicted. The research investigates the interaction between the welding parameters (welding speed, distance between electrodes, and flow rate of shielding gas) and bead geometry for predicting the weld bead geometry (bead width, bead height). Taguchi techniques are applied to bead shape to develope curve equation for predicting the optimized process parameters and quality characteristics by analyzing the S/N ratio. The experimental results and measured error is within the range of 10% presenting satisfactory accuracy. The curve equation was developed in such a way that you can predict the bead geometry of constructed machinery that can be used for making tandem welding process.

Microstructures and Hardness of Al-Si Coated 11%Cr Ferritic Stainless Steel, 409L GTA Welds (Al-Si 용융도금된 11%Cr 페라이트 스테인리스강, STS409L GTA 용접부의 미세조직과 경도)

  • Park, Tae-Jun;Kong, Jong-Pan;Na, Hye-Sung;Kang, Chung-Yun;Uhm, Sang-Ho;Kim, Jeong-Kil;Woo, In-Su;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Ferritic stainless steels, which have relatively small thermal expansion coefficient and excellent corrosion resistance, are increasingly being used in vehicle manufacturing, in order to increase the lifetime of exhaust manifold parts. But, there are limits on use because of the problem related to cosmetic resistance, corrosions of condensation and high temperature salt etc. So, Aluminum-coated stainless steel instead of ferritic stainless steel are utilized in these parts due to the improved properties. In this investigation, Al-8wt% Si alloy coated 409L ferritic stainless steel was used as the base metal during Gas Tungsten Arc(GTA) welding. The effects of coated layer on the microstructure and hardness were investigated. Full penetration was obtained, when the welding current was higher than 90A and the welding speed was lower than 0.52m/min. Grain size was the largest in fusion zone and decreased from near HAZ to base metal. As welding speed increased, grain size of fusion zone decreased, and there was no big change in HAZ. Hardness had a peak value in the fusion zone and decreased from the bond line to the base metal. The highest hardness in the fusion zone resulted from the fine re-precipitation of the coarse TiN and Ti(C, N) existed in the base metal during melting and solidification process and the presence of fine $Al_2O_3$ and $SiO_2$ formed by the migration of the elements, Al and Si, from the melted coating layer into the fusion zone.

Airborne Concentrations of Welding Fume and Metals of Workers Exposed to Welding Fume (용접사업장 근로자의 흄 및 금속 노출농도에 대한 평가와 혈중 금속 농도)

  • Choi, Ho-Chun;Kim, Kangyoon;An, Sun-Hee;Park, Wha-Me;Kim, So-Jin;Lee, Young-Ja;Chang, Kyou-Chull
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.56-72
    • /
    • 1999
  • Airborne concentrations of welding fumes in which 13 different metals such as Al, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sn, Ti, and Zn were analyzed were measured at 18 factories including automobile assembly and manufactures, steel heavy industries and shipyards. Air samples were collected by personal sampler at each worker's worksite(n=339). Blood levels of Cd, Cu, Fe, Mn, Pb and Zn were also measured from samples taken from 447 welders by atomic absorption spectrometry and compared with control values obtained from 127 non-exposed workers. The results were as follows ; 1. Among various welding types, $CO_2$ welding 70.2 % were widely used, shielded metal arc welding(SMAW) 22.1 % came next, and rest of them were metal inert gas(MIG) welding, submerged arc welding(SAW), spot welding(SPOT) and tungsten inert gas(TIG) welding. 2. Welding fume concentration was $0.92mg/m^3$($0.02{\sim}15.33mg/m^3$) at automobile assembly and manufactures, $4.10mg/m^3$($0.02{\sim}70.75mg/m^3$) at steel heavy industries and $5.59mg/m^3$($0.30{\sim}91.16mg/m^3$) at shipyards, respectively, showing significant difference among industry types. Workers exposed to high concentration of welding fumes above Korean Permissible Exposure Limit(KPEL) amounted to 7.9 % and 12.5 %, in $CO_2$ welding and in SMAW at automobile assembly and manufactures and 62.7 % in $CO_2$ welding, and 12.5 % in SMAW at shipyards, and 66.2 % in $CO_2$ welding and 70.6 % in SMAW at steel heavy industries. 3. Geometric mean of airborne concentration of each metal released from welding fumes was below one 10th of KPEL in all welding types. Percentage of workers, however, exposed to airborne concentration of metals above KPEL amounted to 16.8 % in Mn and 7.6 % in Fe in $CO_2$ welding; 37.5 % in Cu in SAW, 30 % in Cu in TIG; and 25 % in Pb in SPOT welding. As a whole, 76 Workers(22.4%) were exposed to high concentration of any of the metals above KPEL. 4. There were differences in airborne concentration of metals such as Al, Cd, Cr, Cu. Fe. Mn, Mo, Ni, Pb, Si, Sn, Ti and Zn by industry types. These concentrations were higher in shipyards and steel heavy industries than in automobile assembly and manufactures. Workers exposed to higher concentration of Pb above KPEI amounted to 7.4 % of workers(7/94) in automobile assembly and manufactures. In shipyards, 19.2 % of workers(19/99) were over-exposed to Mn and 7.1 % (7/99) to Fe above KPEL. In steel heavy industries, 14.4 %(21/146), 7.5 %(11/146) and 13 %(19/146) were over-exposed to Mn, Fe and Cu, respectively. As a whole, 76 out of 339 workers(22.4%) were exposed to any of the metals above KPEL. 5. Blood levels of Cd, Cu, Fe, Mn, Pb, and Zn in welders were $0.11{\mu}g/100m{\ell}$, $0.84{\mu}g/m{\ell}$, $424.4{\mu}g/m{\ell}$, $1.26{\mu}g/100m{\ell}$, $5.01{\mu}g/100m{\ell}$ and $5.68{\mu}g/m{\ell}$, respectively, in contrast to $0.09{\mu}g/100m{\ell}$, $0.70{\mu}g/m{\ell}$, $477.2{\mu}g/m{\ell}$, $0.73{\mu}g/100m{\ell}$, $3.14{\mu}g/100m{\ell}$ and $6.15{\mu}g/m{\ell}$ in non-exposed control groups, showing significantly higher values in welders but Fe and Zn.

  • PDF