• Title/Summary/Keyword: Gas Leakage

Search Result 721, Processing Time 0.02 seconds

The Changes of Cuff Pressure from Endotracheal Intubation for Long-term Mechanical Ventilation (장기간 기계호흡 환자에서 기관내 관의 기낭압의 변화)

  • Jung, Bock-Hyun;Park, Whan;Koh, Youn-Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.2
    • /
    • pp.156-165
    • /
    • 2002
  • Background: A tracheal stenosis is caused by mucosal ischemic injury related to a high cuff pressure ($P_{cuff}$) of the endotracheal tube. In contrast, aspiration of the upper airway secretion and impaired gas exchange due to cuff leakage is related to a low $P_{cuff}$. To prevent these complications, the $P_{cuff}$ should be kept appropriately because the appropriate $P_{cuff}$ appears to change according to the patient's daily respiratory mechanics. However, the constant cuff volume($V_{cuff}$) has frequently been instilled to the cuff balloon on a daily basis to maintain the optimal $P_{cuff}$ instead of monitoring the $P_{cuff}$ directly at the patients' bedside. To address the necessity of continuous $P_{cuff}$ monitoring, the change in the $P_{cuff}$ was evaluated at various $V_{cuff}$ levels on a daily basis in patients with long-term mechanical ventilation. The utility of mercury column sphygmomanometer for the continuous monitoring $P_{cuff}$ was also investigated. Method: The change in $P_{cuff}$ according to the increase in $V_{cuff}$ was observed in 17 patients with prolonged endotracheal intubation for mechanical ventilation for 2 week or more. This maneuver measured the change in $P_{cuff}$ daily during the mechanical ventilation days. In addition, the $P_{cuff}$ measured by mercury column sphygmomanometer was compared with the $P_{cuff}$ measured by an automatic cuff pressure manager. Results : There were no statistically significant changes of $P_{cuff}$ during more than 14 days of intubation for mechanical ventilation. However the $V_{cuff}$ required to maintain the appropriate $P_{cuff}$ varied from 1.9 cc to 9.6 cc. In addition, the intra-individual variation of the $P_{cuff}$ was observed from 10 $cmH_2O$ to 46 $cmH_2O$ at constant 3 cc $V_{cuff}$. The $P_{cuff}$ measured by the bedside mercury column sphygmomanometer is well coincident with that measured by the automatic cuff pressure manager. Conclusion: Continuous monitoring and management of the $P_{cuff}$ to maintain the appropriate $P_{cuff}$ level in order to prevent cuff related problems during long-term mechanical ventilation is recommended. For this purpose, mercury column sphygmomanometer may replace the specific cuff pressure monitoring equipment.