• Title/Summary/Keyword: Gas Engine Power Generation

Search Result 110, Processing Time 0.026 seconds

POWER AND ENERGY STORAGE DEVICES FOR NEXT GENERATION HYBRID ELECTRIC VEHICLE (차세대 복합형 전기자동차의 전력 및 에너지 저장장치)

  • Kim, Min-Huei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.1 no.1
    • /
    • pp.31-41
    • /
    • 1998
  • Fuel conservation and environmental pollution control are the principal motivating factors that are urging at present widespread research and development activities for electric hybrid vehicles throughout the world. The paper describes different possible energy storage devices, such as battery, flywheel and ultra capacitor, and power sources, such as gasoline engine, diesel engine, gas turbine and fuel cell for next generation hybrid electric vehicle. The technology trend and comparison in energy storage and power devices indicate that battery and gasoline engine, respectively will remain the most viable devices for hybrid vehicle at least in the near future.

  • PDF

A Study on Knocking Characteristics of a 300 kW Class CNG Engine for CHP (열병합 발전용 300 kW급 천연가스 엔진의 노킹 특성 연구)

  • Kim, Chang-Gi;Kim, Young-Min;Lee, Jang-Hee;Roh, Yun-Hyun;Ann, Tae-Keun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2008
  • Among the various prime movers for combined heat and power (CHP) system, the CNG engine is the most commonly used power generation equipment of which power is less than 1MW. The 300 kW class CNG engine for CHP can meet stringent emission regulations with the adoption of stoichiometric air-fuel ratio control and three way catalyst. As the thermal efficiency of the stoichiometric ratio engine is lower than that of lean burn engine, it is necessary to operate the stoichiometric engine at its minimum spark advance for the best torque (MBT). However, knock control should be introduced for the engine under high intake air temperature conditions because MBT operating conditions are generally very close to those of knock occurrence. In this study, engine performances and knocking characteristics were experimentally investigated for the CNG engine that needs to be operated at higher intake air temperature conditions than normal conditions.

  • PDF

Performance Simulation of Motorcycle Engine Exhaust Heat Recovery System using Thermoelectric Element (열전소자를 이용한 모터사이클용 엔진 배기 폐열 회수 시스템 성능 해석)

  • Lee, Moo-Yeon;Kim, Kihyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.695-701
    • /
    • 2018
  • Research into exhaust heat recovery has been actively carried out to improve the thermal efficiency of internal combustion engines. In this study, the performance of thermoelectric generation from exhaust heat recovery for motorcycle engines was analyzed by 1-D thermo-fluid simulation. GT-SUITE, which was developed by Gamma Tech., was used for the simulation of the internal combustion engine and thermoelectric generation system. The basic performance of the engine was analyzed in the range of engine speed of 1000~7000 rpm and engine load of 0~100%. The ratio of exhaust heat energy to fuel chemical energy was found to be about 40~60%. A combined simulation of the engine model and thermoelectric generation model was carried out to analyze the voltage, current and power generated by the thermoelectric material. The generation characteristics of the thermoelectric material was dominantly affected by the exhaust gas temperature. The maximum generated power of the current thermoelectric generation system was found to be about 2.2% of the total exhaust heat energy. The design optimization of the thermoelectric generation system will be carried out to maximize its power generation and economic feasibility.

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

Experiment on Small A.C. MHD Power Generator (소용량 교류 MHD발전기에 대한 실험적 연구)

  • Choon Saing Jhoun
    • 전기의세계
    • /
    • v.25 no.5
    • /
    • pp.79-87
    • /
    • 1976
  • This paper is to investigate the A.C generation of MHD engine, converting directly the kinetic energy of conductive gas in high temperature to electric power by the effect of magnetic field. It is known that there are at least two kinds of method in A.C MHD power generation; one, by sending stationary plasma flow in an alternating or rotating magnetic field and the other, by transmission of pulse type plasma flow in uniform and constant magnetic field, former method is adopted here. In order to raise the total efficiency of close cycle in combination with nuclear power and MHD genertaion, an argon plasma jet is utilized as heat source, which is not mixed with the seed material, and the design data are obtained for A.C MHD generation in small capacity, but induced voltage and power output have the maximum values, 15 voltages and 7.5W respectively due to plasma flow with low conductivity and weak magnetic field.

  • PDF

A Study on Fault Detection of a Turboshaft Engine Using Neural Network Method

  • Kong, Chang-Duk;Ki, Ja-Young;Lee, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.100-110
    • /
    • 2008
  • It is not easy to monitor and identify all engine faults and conditions using conventional fault detection approaches like the GPA (Gas Path Analysis) method due to the nature and complexity of the faults. This study therefore focuses on a model based diagnostic method using Neural Network algorithms proposed for fault detection on a turbo shaft engine (PW 206C) selected as the power plant for a tilt rotor type unmanned aerial vehicle (Smart UAV). The model based diagnosis should be performed by a precise performance model. However component maps for the performance model were not provided by the engine manufacturer. Therefore they were generated by a new component map generation method, namely hybrid method using system identification and genetic algorithms that identifies inversely component characteristics from limited performance deck data provided by the engine manufacturer. Performance simulations at different operating conditions were performed on the PW206C turbo shaft engine using SIMULINK. In order to train the proposed BPNN (Back Propagation Neural Network), performance data sets obtained from performance analysis results using various implanted component degradations were used. The trained NN system could reasonably detect the faulted components including the fault pattern and quantity of the study engine at various operating conditions.

Development of a Integrated Modifiable Micro Gas Turbine Engine Test Rig using LabVIEW (LabVIEW를 이용한 소형 가스터빈 엔진의 통합 시험장치 개발)

  • Kang, Young-Soo;Kim, Do-Hun;Lee, In-Chul;Yoon, Sang-Hoon;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.354-358
    • /
    • 2009
  • Micro gas turbine engine is well known as a power plant of unmanned aerial vehicle and a small scale emergency generation system and also, it is significant as initial research of large gas turbine and educational purpose of gas turbine. Many sort of Micro gas turbine test set for education is produced by several manufacturers, but all of the engine control system of them is separated with data acquisition system; moreover, the engine control algorithms are inaccessible and related variables could not be collected. In this investigation, the Integrated Modifiable Test Rig which has modifiable engine start-up, drive and situational control logics is developed by LabVIEW with I/O devices and it provides wide experimental applicability to studies of dynamic characteristics of fuel system and combustion instability.

  • PDF

Evaluation of Blade Resonance of 5MW Power Generation Gas Turbine (발전용 소형가스터빈 블레이드 공진 안정성 평가)

  • Ahn, Sung-Jong;Park, Lu-Ke;Yun, Tae-Jun;Suk, Jin-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.433-438
    • /
    • 2011
  • Doosan has been developing a 5MW class gas turbine engine, DGT-5. Campbell diagram has been used for prediction of possible occurrence of resonances of rotating machinery. The Campbell diagram consists of blade natural frequency and excitation frequency. In this paper, modal characteristics of compressor and turbine blades are investigated and Campbell diagram is obtained. We calculated compressor and turbine blade's natural frequency using ANSYS tool. The result has been verified through test.

  • PDF

Development of Biomass Gasification System Using a Downdraft Gasifier (하향류식 가스화기를 이용한 바이오매스 가스화 시스템 개발)

  • Son, Young-Il;Yoon, Sang-Jun;Choi, Young-Chan;Kim, Yong-Ku;Ra, Ho-Won;Lee, Jae-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.662-665
    • /
    • 2007
  • Since biomass is given the status of "renewable resource" in contrast to "exhaustible resource" e.q., fossil fuels, it plays a significant role in the sustainable development in future. We installed a downdraft gasifier for power generation from biomass materials. The biomass raw materials were wood chips with a moisture content of 18-23 wt.%, supplied at 40-50kg/h. This paper describes on the optimum gasification air ratio that is defined as the ratio of the oxygen mole supplied into the gasifier to the oxygen mole required for complete combustion for producing syngas supplied into a gas engine. The results showed that, lower heating value of the syngas was 1200 $kcal/m^3$ $_N-dry$ and cold gas efficiency of the gasification system was 72% under optimum operating conditions.

  • PDF

A Study on Defect Diagnostics of Gas-Turbine Engine on Off-Design Condition Using Genetic Algorithms (유전 알고리즘을 이용한 탈 설계 영역에서의 항공기용 가스터빈 엔진 결함 진단)

  • Yong, Min-Chul;Seo, Dong-Hyuck;Choi, Dong-Whan;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.60-67
    • /
    • 2008
  • In this study, the genetic algorithm has been used for the real-time defect diagnosis on the operation of the aircraft gas-turbine engine. The component elements of the gas-turbine engine for consideration of the performance deterioration consist of the compressor, the gas generation turbine and the power turbine. Compared to the on-design point, the teaming data has been increased 200 times in case off-design conditions for the altitude, the flight mach number and the fuel consumption. Therefore, enormous learning time has been required for the satisfied convergence. The optimal division has been proposed for learning time decrease as well as the high accuracy. As results, the RMS errors of the defect diagnosis using the genetic algorithm have been confirmed under 5 %.