• Title/Summary/Keyword: Gas Dynamics

Search Result 791, Processing Time 0.033 seconds

An Experimental Study on NOx Emissions with Hydrogen and Natural gas Co-firing for EV burner of GT24 (GT24 가스터빈용 EV 버너의 수소혼소에 따른 질소산화물 배출 특성에 대한 실험적 연구)

  • Jeongjae Hwang;Won June Lee;Kyungwook Min;Do Won Kang;Han Seo Kim;Min Kuk Kim
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.85-91
    • /
    • 2023
  • In this study, an experimental study was conducted on the flame behavior, combustion dynamics, and NOx emission characteristics for hydrogen co-firing with the EV burner which is the first stage combustor of GT24. It was confirmed that as the hydrogen co-firing rate increases, the NOx emission increases. This change was elucidate to be the result of a combination of changes in penetration depth due to changes in fuel density, reduction in fuel mixing due to changes in flame position due to increased flame propagation speed, and oscillation of fuel mixedness due to combustion instability. Through pressurization tests in the range of 1.3 to 3.1 bar, NOx emission characteristics under high-pressure operating conditions were predicted, and based on this, the hydrogen co-firing limits of the EV burner was evaluated.

An atomistic model for hierarchical nanostructured porous carbons in molecular dynamics simulations

  • Chae, Kisung;Huang, Liping
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.403.2-403.2
    • /
    • 2016
  • Porous materials play a significant role in energy storage and conversion applications such as catalyst support for polymer electrolyte membrane fuel cell. In particular, hierarchical porous materials with both micropores (poresize, ${\delta}$ < 2 nm) and regularly arranged mesopores (2 nm < ${\delta}$ < 50 nm) are known to greatly enhance the efficiency of catalytic reactions by providing enormous surface area as well as fast mass transport channels for both reactants and products from/to active sites. Although it is generally agreed that the microscopic structure of the porous materials directly affects the performance of these catalytic reactions, neither detailed mechanisms nor fundamental understanding are available at hand. In this study, we propose an atomistic model of hierarchical nanostructured porous carbons (HNPCs) in molecular dynamics simulations. By performing a systematic study, we found that structural features of the HNPC can be independently altered by tuning specific synthesis parameters, while remaining other structures unchanged. In addition, we show some structure-property relations including mechanical and gas transport properties.

  • PDF

NUCLEAR SPIRALS IN NEARBY GALAXIES

  • ANN HONG BAE
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.121-124
    • /
    • 2005
  • High resolution images of the nuclear regions of nearby galaxies show that nuclear spirals are preponderant in normal galaxies as well as in active galaxies. These nuclear spirals, especially the grand-design nuclear spirals are found to be formed by the gas flow driven by the bar. Hydrodynamical simulations exploring a wide range of parameter space show that the morphology of nuclear spirals depends not only on the inner dynamics but on the global dynamics resulting from the global mass distribution of galaxies. Thus, the nuclear morphology can be a diagnostic tool for the inner dynamics of galaxies when the global mass distribution is taken into account.

Molecular Dynamics Study on the Binary Collision of Nanometer-Sized Droplets of Liquid Argon

  • Chun, In-Beom;Ha, Man-Yeong;Jang, Joon-Kyung;Yoon, Hyun-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2027-2031
    • /
    • 2011
  • Molecular dynamics simulation is used to study the binary collisions of nanometer-sized droplets of argon in the presence of a surrounding gas. By systematically varying the droplet size, the impact parameter and the velocity of collision, the outcome of such collisions were examined and they can be classified into coalescence, separation and shattering. If one of the colliding droplets is half or less than the other in diameter, a shattering is not possible to occur. The threshold of impact parameter for a given separation was studied by adjusting the Weber number. Overall nanoscale droplets were more likely to coalesce than the macroscopic sized ones due to their high surface-to-volume ratio.

Non-dimensional analysis of cylindrical objects freely dropped into water in two dimensions (2D)

  • Zhen, Yi;Yu, Xiaochuan;Meng, Haozhan;Li, Linxiong
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.267-287
    • /
    • 2020
  • The dropped objects are identified as one of the top ten causes of fatalities and serious injuries in the oil and gas industry. It is of importance to understand dynamics of dropped objects under water to accurately predict the motion of dropped objects and protect the underwater structures and facilities from being damaged. In this paper, we study non-dimensionalization of two-dimensional (2D) theory for dropped cylindrical objects. Non-dimensionalization helps to reduce the number of free parameters, identify the relative size of effects of force and moments, and gain a deeper insight of the essential nature of dynamics of dropped cylindrical objects under water. The resulting simulations of dimensionless trajectory confirms that drop angle, trailing edge and drag coefficient have the significant effects on dynamics of trajectories and landing location of dropped cylindrical objects under water.

Numerical Study of Droplet Motion in a Microchannel with defferent contact angles (접촉각에 따른 마이크로채널 내에서의 액적 거동에 대한 수치적 연구)

  • Choi, Ji-Young;Son, Gi-Hun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.656-657
    • /
    • 2008
  • The droplet dynamics in a hydrophilic/hydrophobic microchannel, which is applicable to a typical proton exchange membrane fuel cell (PEMFC), is studied numerically by solving the equations governing conservation of mass and momentum. The liquid-gas interface or droplet shape is determined by a level set method which is modified to treat contact angles. The matching conditions at the interface are accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The effects of contact angle, inlet flow velocity, droplet size and side wall on the droplet motion are investigated parametrically. Based on the numerical results, the droplet dynamics including the sliding and detachment of droplets is found to depend significantly on the contact angle. Also, a droplet removal process is demonstrated on the combination of hydrophilic and hydrophobic surfaces.

  • PDF

Equilibria and Dynamics of Toluene and Trichloroethylene onto Activated Carbon Fiber

  • Park, Jee-Won;Lee, Young-Whan;Choi, Dae-Ki;Lee, Sang-Soon
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.93-99
    • /
    • 2002
  • Adsorption dynamics for toluene and trichloroethylene with an isothermal fixed bed of activated carbon fiber were investigated. Equilibrium isotherms were measured by a static method for toluene and trichloroethylene onto activated carbon fiber at temperatures of 298, 323, and 348 K and pressure up to 3 kPa for toluene and 6 kPa for trichloroethylene, respectively. These results were correlated by the Toth equation. And dynamic experiments in an isothermal condition of 298 K were examined. Breakthrough curves reflected the effects of the experimental variables such as partial pressures for adsorbate and interstitial bulk velocities of gas flow. To present the column dynamics, a dynamic model based on the linear driving force (LDF) mass transfer model was applied.

  • PDF

Dynamic Sustainability Assessment of Road Projects

  • Kaira, Sneha;Mohamed, Sherif;Rahman, Anisur
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.493-502
    • /
    • 2020
  • Traditionally, road projects are initiated based on an assessment of their economic benefit, after which the environmental, social and governance effects are addressed discretely for the project according to a set of predetermined alternatives. Sustainable road infrastructure planning is vital as issues like diminishing access to road construction supplies, water scarcity, Greenhouse Gas emissions, road-related fatalities and congestion pricing etc., have imposed severe economic, social, and environmental damages to the society. In the process of addressing these sustainability factors in the operational phase of the project, the dynamics of these factors are generally ignored. This paper argues that effective delivery of sustainable roads should consider such dynamics and highlights how different aspects of sustainability have the potential to affect project sustainability. The paper initially presents the different sustainability-assessment tools that have been developed to determine the sustainability performance of road projects and discuss the inability of these tools to model the interrelationships among sustainability-related factors. The paper then argues the need for a new assessment framework that facilitates modelling these dynamics at the macro-level (system level) and helping policymakers for sustainable infrastructure planning through evaluating regulatory policies.

  • PDF

Action Plan for the Effects of Variation of Fuel Gas Composition on Domestic Gas Turbines (국내 가스터빈연소기 LNG열량변화에 따른 대응방향 연구)

  • Lee, Joongsung;Ha, Jongman;Han, Jeongok
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.115-118
    • /
    • 2014
  • Since 1st July 2012, the our Goverment and KOGAS have been adopting a calorific value range system from the standard calorific value system. Domestic power plant companies and KOGAS have asked GT manufacture about the effects of the reduction of the calorific value. We received GT manufacture's answer to the question on April 12.2011. Gas components of some GT models were limited to no more than 9% of the C2+ content. Now some of GTs remain under debating whether effects on variation of gas heating or not.

  • PDF

Analysis of Risk Assessment Factors for Gas leakage and Dispersion in Underground Power Plant (지하복합발전플랜트 내의 가스 누출 및 확산에 의한 위험성 평가 인자 분석)

  • Choi, Jinwook;Li, Longnan;Park, Jaeyong;Sung, Kunhyuk;Lee, Seonghyuk;Kim, Daejoong
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • Gas leakage and dispersion in the underground LNG power plant can lead to serious fire and explosion accident. In this study, computational fluid dynamics simulation was applied to model the dynamic process of gas leakage and dispersion phenomena in a closed space. To analyze the risk assessment factor, such as the flammable volume ratio, transient simulations were carried out for different scenarios. The simulation results visualized the gas distribution with time in the closed space. The flammable volume ratio was introduced for quantitative analysis the fire/explosion probability.