• Title/Summary/Keyword: Gas Desulfurization Systems

Search Result 23, Processing Time 0.028 seconds

Evaluation of the Organic Linings at Gas Desulfurization System (탈황 설비용 유기 라이너의 평가)

  • Song, Yo-Seung;Kwan, Hyun-Ok;Jho, Nam-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1178-1182
    • /
    • 2012
  • The organic linings at flue gas desulfurization systems (FGD system) in power plant have the excellent chemical properties but, lose the anticorrosive properties according to the aging with environment conditions. The properties of the organic linings depend on the manufacturing company. Therefore, the basic properties of organic linings for the preestimate of life time should be examined by conducting the aging and the bond strength test according to temperature. The pre-aging samples were compared with the post-aging samples. The temperature conditions of the aging process were 70, 150 and $200^{\circ}C$. The bond strength was calculated and the cross sections of fracture surface were examined by optical microscope and SEM. The $T_g$ was examined by DSC, DTA and TGA.

The Influence of FGD Gypsum Fabricated from Limestone Sludge on Cement Properties

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Lee, Jong Kyu;Song, Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.676-681
    • /
    • 2016
  • For the purpose of reducing the amount of limestone, which is used as a desulfurization agent to absorbing $SO_X$ gas in thermal power plants, and to recycle limestone sludge generated from a steel mill, limestone sludge was utilized as a desulfurization agent. In this study, cement, made of flue gas desulfurization (FGD) gypsum obtained in a desulfurization process using limestone sludge, was manufactured then, experiments were conducted to identify the physical properties of the paste and mortar using the cement. The results of the crystal phase and microstructure analyses showed that the hydration product of the manufactured cement was similar to that of ordinary Portland cement. No significant decline of workability or compressive strength was observed for any of the specimens. From the results of the experiment, it was determined that FGD gypsum manufactured from limestone sludge did not influence the physical properties of the cement also, quality change did not occur with the use of limestone sludge in the flue gas desulfurization process.

The Effect of Spray Characteristics on Flue Gas Desulfurization Yield in Spray Drying Sorber (반건식 세정기의 슬러리 분무 특성에 따른 산성가스 제거효율)

  • Yang, Hyun-Mo;Kim, Sang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.79-84
    • /
    • 2001
  • The effect of spray characteristics on desulfurization yield was evaluated by performing experiments with pilot spray drying sorber (SDS). Among the variables of operating conditions, the slurry-spraying conditions were chosen as major parameters; Stoichiometric ratio and Sauter mean diameter of slurry droplet were varied for the different gas temperatures and $SO_{2}$ concentrations in the inlet gas flow. From the experimental results, we proposed semi-empirical models of desulfurization yield for both Stoichiometric ratio and Sauter mean diameter of droplets. The optimal condition of spray can be determined based on these results, which might be applied to the design or scale-up of SDS systems.

  • PDF

A Study on the Desulfurization Efficiency as a Variation of Flow Field Applyed a Mixing Enhancement Apparatus (혼합촉진장치 적용시 유동장 변화에 의한 탈황효율 연구)

  • Chung, J.D.;Kim, J.W.;SeomMun, J.
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.177-181
    • /
    • 2010
  • This paper has designed a mixing enhancement apparatus called Lobed-plate and Step-plate and comparatively calculated desulfurization efficiency of when its shape was changed. The parameters used at this time were the shape, SR ratio and the number of nozzles of the mixing enhancement apparatus and comparatively analyzed desulfurization efficiency according to these parameters. As a result, the Step-plate appeared as more highly by around 4% than Lobed-plate in desulfurization efficiency according to the shape of the mixing promotion apparatus, and when the desulfurization efficiency as a SR ratio is considered, it appeared highly by an average of 5% when the SR ratio is 3 rather than 2. As a result of comparing desulfurization efficiency by fixing the SR ratio and setting the number of nozzles as 4 pieces and 6 pieces, there was no big change in desulfurization efficiency when the SR ratio is 2, but it could be confirmed to improve by around 5% when the SR ratio is 3 when time passed 8 seconds.

A Study on the Application Limestone Sludge to the Flue Gas Desulfurization Process (제철 산업부산물인 석회석 슬러지의 배연탈황 공정 적용에 관한 연구)

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Lee, Jong Kyu;Song, Hun;Yun, Young Min
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.575-583
    • /
    • 2014
  • The flue gas desulfurization (FGD) process is currently the most effective process utilized to remove sulfur dioxide from stack gases of coal-fired plants. However, FGD systems use a lot of limestone as desulfurizing agent. In this study, we use limestone sludge, which is a by-product of the steel industry, to replace the desulfurizing agent of the FGD system. The limestone particle size is found to be unrelated to the desulfurizing rate; the gypsum purity, however, is related. Limestone sludge mixes with limestone slurry delivered at a constant rate in a desulfurizing agent with organic acid are expected to lead to a high desulfurization efficiency and high quality by-product (gypsum).

A Study on Desulfurization Efficiency of Limestone Sludge with Particle Size (석회석 슬러지의 입도제어에 따른 배연탈황효율에 관한 연구)

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.17-23
    • /
    • 2015
  • Flue gas desulfurization(FGD) is the technique to remove $SO_2$ gas from stack gases of coal-fired plants. Many researcher have studied to replace the desulfurizing agent because FGD systems use a lot of limestone and energy. In this study, we use the limestone sludge which is a by-product of steel industry in order to replace desulfurizing agent of FGD system by control the particle size of limestone sludge. And desulfurization performance test is implemented by investigating $SO_2$ gas removal properties upon the characteristic of the limestone sludge with various particle size.

Middle-Temperature Desulfurization Using Cobalt Oxide (코발트를 이용한 중온 영역에서의 탈황반응에 관한)

  • Bin, Jeong-Jae;Sik, Jeong-Jong
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.443-444
    • /
    • 2003
  • The developments on desulfurization have been focused on the application to the advanced power generation systems such as integrated gasification-combined cycle (lGCC) and the gasification-molten carbonate fuel ceil (MCFC). The gas produced from the coal gasification contains H$_2$S and other hazardous sulfur compounds, which must be removed to avoid corrosion and environmental problems. (omitted)

  • PDF

Numerical Analysis of the Energy-Saving Tray Absorber of Flue-Gas Desulfurization Systems (배연탈황설비의 에너지 절약형 트레이 흡수탑에 대한 수치 해석적 연구)

  • Hwang, Jae-Min;Choi, Ssang-Suk;Chung, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.775-782
    • /
    • 2010
  • This study is performed to study the effect of the tray in the absorber of a flue-gas desulphurization (FGD) system by using a computational fluid dynamic (CFD) technique. Stagnant time of slurry and the pressure drop in the FGD absorber increase when a tray is used in the absorber. Stagnant time of slurry results in an increase in the desulfurization effect and a decrease in the power of the absorber recirculation pump; however, increased pressure drop requires more power of booster fan in the FGD system should be increased. The gas and slurry hydrodynamics inside the absorber is simulated using a commercial CFD code. The continuous gas phase has been modeled in an Eulerian framework, while the discrete liquid phase has been modeled by adopting a Lagrangian approach by tracking a large number of particles through the computational domain. It was observed that the power saved upon increasing the stagnant time of slurry was more than increased power with pressure drop.

Research on Desulfurization and Dust Removal Characteristics in Oxy-PC Combustion system (순산소 석탄연소 시스템에서의 탈황·집진 기초 특성)

  • Min, Tai Jin;Keel, Sang In;Yun, Jin Han;Roh, Seon Ah;Han, Bang Woo;Lee, Hyung Keun;Kim, Sang Soo;Lee, Kang Soo;Seo, Sang Il;Kim, Young Ju
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.116-120
    • /
    • 2010
  • $CO_2$ is regarded as one of the greenhouse gases(GHG), which is the main reason of climate change. In order to achieve lower $CO_2$ emissions, several efforts have been conducted worldwide. $CO_2$ capture & storage(CCS) technology development is needed for a coal-fired combustion power plant because of huge $CO_2$emission. Oxy fuel combustion, one of the CCS technologies has been considered as a primary concern, nowadays. Oxy-fuel combustion needs flue gas recirculation(FGR) for stable operation and enrichment of $CO_2$ concentration in the flue gas. FGR adoption for oxy-fuel combustion requires development of effective desulfurization and dust removal technology. In this study, desulfurization characteristics of lime and dust removal technology have been researched in the laboratory scale coal combustor.