• Title/Summary/Keyword: Gas Density

Search Result 2,181, Processing Time 0.031 seconds

Analysis of Cold Gas Flow in Puffer Type GCB Considering the Real Gas Property of $SF_6$ ($SF_6$ 가스의 실제 기체특성을 고려한 파퍼식 가스차단기 내의 냉가스 유동해석)

  • 김홍규;정진교;박경엽
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.129-134
    • /
    • 2004
  • To analyze the performance of the gas circuit breaker(GCB), the flow field variables such as temperature, pressure and density should be evaluated accurately In the puffer chamber of puffer type GCB, the pressure rise may Exceed 20 bar and in this range of high pressure, $SF_6$ gas deviates the ideal gas property. Therefore, the real gas property of $SF_6$ should be taken into consideration for the accurate analysis of flow field. This paper presents the analysis technique of cold gas flow in GCB employing the real gas state equation of SF6. The FVFLIC method is Employed to solve the axisymmetric Euler equation. To reduce the computational effort of real gas state equation, the relationship between density and pressure is approximated by the polynomial at the temperature of 300K. The proposed method is applied to the test GCB model and simulation results show good agreement with the experimental ones.

Effect of Parameters for Dense Bleposit by Plasma (플라즈마에 의한 고밀도침적물 제조시 변수들의 영향)

  • 정인하
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.111-121
    • /
    • 1998
  • Thick and dense deposit of higher than 97% of theoretical density was formed by induction plasma spraying. To investigate the effects of powder morphology on the density of deposit, two different kinds of Yttria-Stabilized-Zirconia powder, METCO202NS (atomized & agglomerated) and AMDRY146 (fused & crushed), were used and compared. After plasma treatment, porous METCO202NS powder was all the more densely deposited and its density was increased. In addition to the effect of powder morphology, the process parameters such as, sheath gas composition, probe position, particle size and spraying distance, and so on, were evaluated. The result of experiment with AMDRY146 powder, particle size and spraying distance affected highly on the density of the deposit. The optimum process condition for the deposition of -75 ${\mu}m$ of 20%-Yttria-Stabilized-Zirconia powder was 120/201/min of Ar/$H_2$ gas rate, 80 kW of plasma plate power, 8 cm of probe position and 150 Torr of spraying chamber pressure, at which its density showed 97.91% of theoretical density and its deposition rate was 20 mm/min. All the results were assessed by statistical approach what is called ANOVA.

  • PDF

Effects of supplemental glycerol polyethylene glycol ricinoleate in different energy density diets on the growth performance, blood profiles, nutrient utilization, and excreta gas emission of broilers: focus on dietary glycerol polyethylene glycol ricinoleate in broilers

  • Yin, Jia;Yun, Hyeok Min;Kim, In Ho
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.219-228
    • /
    • 2018
  • This study evaluated the effects of glycerol polyethylene glycol ricinoleate (GPGR) supplementation in different energy density diets on the growth performance, blood profiles, excreta gas emission, and total tract apparent retention (TTAR) of nutrients in broilers. A total of 544 one-day-old male Ross broilers were used in a 35-day trial. The broilers were allocated into one of four treatment groups in a $2{\times}2$ factorial arrangement with two levels of energy densities (a normal energy or decreased energy density) and GPGR (0 and 0.035%). From day 18 to 35, the GPGR supplemented and normal energy density diet groups showed a significantly improved (p < 0.05) body weight gain (BWG). Meanwhile, the GPGR supplemented diet group had a significantly reduced (p < 0.05) feed conversion ratio (FCR) compared to that of the non-supplemented diet group. From day 0 to 35, the GPGR supplemented diet and the normal energy density diet groups had a significantly increased (p < 0.01) BWG and a reduced (p < 0.01) FCR. Moreover, GPGR supplementation tended to increase (p < 0.1) the TTAR of the dry matter (DM) compared with the non-supplemented diets. Likewise, the normal energy density diets had a significantly improved TTAR for the gross energy (GE) (p < 0.05) than that of the decreased energy density diets. No interactive effects were observed between the energy density and GPGR supplemented diets. In conclusion, both dietary GPGR supplementation and normal energy density diets had beneficial effects on the growth performance of broiler chickens without any adverse effects on blood profiles and excreta gas emission.

A Study on the Bypass Flow Penetrating Through a Gas Diffusion Layer in a PEM Fuel Cell with Serpentine Flow Channels (사행유로를 갖는 고분자연료전지내부에서 가스확산층을 통과하는 반응가스 우회유동에 대한 연구)

  • Cho, Choong-Won;Ahn, Eun-Jin;Lee, Seung-Bo;Yoon, Young-Gi;Lee, Won-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.288-297
    • /
    • 2009
  • A serpentine channel geometry often used in a fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from the intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with high aspect ratio of active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compressive forces. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds that of dropwise condensation in cathode channels.

High density plasma etching of CoFeB and IrMn magnetic films with Ti hard mask

  • Xiao, Y.B.;Kim, E.H.;Kong, S.M.;Chung, C.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.233-233
    • /
    • 2010
  • Magnetic random access memory (MRAM), based on magnetic tunnel junction (MTJ) and CMOS, is a prominent candidate among prospective semiconductor memories because it can provide nonvolatility, fast access time, unlimited read/write endurance, low operating voltage and high storage density. The etching of MTJ stack with good properties is one of a key process for the realization of high density MRAM. In order to achieve high quality MTJ stack, the use of CoFeB and IrMn magnetic films as free layers was proposed. In this study, inductively coupled plasma reactive ion etching of CoFeB and IrMn thin films masked with Ti hard mask was investigated in a $Cl_2$/Ar gas mix. The etch rate of CoFeB and IrMn films were examined on varying $Cl_2$ gas concentration. As the $Cl_2$ gas increased, the etch rate monotonously decreased. The effective of etch parameters including coil rf power, dc-bais voltage, and gas pressure on the etch profile of CoFeB and IrMn thin film was explored, At high coil rf power, high dc-bais voltage, low gas pressure, the etching of CoFeB and IrMn displayed better etch profiles. Finally, the clean and vertical etch sidewall of CoFeB and IrMn free layers can be achieved by means of thin Ti hard mask in a $Cl_2$/Ar plasma at the optimized condition.

  • PDF

Effect of Gas Density on Self-Pulsation in Liquid-Gas Swirl Coaxial Injector (액체-기체 와류동축형 분사기의 자기-맥동에 대한 기체 밀도의 영향)

  • Ahn, Jonghyeon;Kang, Cheolwoong;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.134-143
    • /
    • 2022
  • When a recess is applied to a swirl coaxial injector that uses liquid and gas propellants, a self-pulsation phenomenon in which the spray oscillates at regular intervals may occur. The phenomenon is caused by the interaction between the liquid and gas propellants inside the injector recess region. The propellants' kinetic energies are expected to affect significantly the spray oscillation. Therefore, cold-flow tests using helium as a gas-simulating propellant were conducted and compared with the results of the previous study using air. Dynamic pressure was measured in the injector manifold and frequency characteristics were investigated through the fast Fourier transform analysis. In the experimental environment, the helium density was about seven times lower than the air density. Accordingly, the intensity of pressure fluctuations was confirmed to be greater when air was used. At the same kinetic energy condition, the perturbation frequency was almost identical in the low flow rate conditions. However, as the flow rate increased, the self-pulsation frequency was higher when helium was used.

A Study on the Analysis of Measurement Errors of Specific Gravity Meter (기준 밀도계의 측정 오차 분석에 관한 연구)

  • Lee, Kang-Jin;Her, Jae-Young;Ha, Young-Cheol;An, Seung-Hee;Lee, Seung-Jun;Lee, Cheol-Gu
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.676-680
    • /
    • 2002
  • The specific gravity meter is the instrument used to measure the density of fluids under the reference conditions and it can be widely used in industrial areas, especially in massive flow rate natural gas industry. This study has been carried out in an attempt to improve measurement accuracy of natural gas flow rate calculation, providing the adequate installation and proper operation conditions of specific gravity meter. The test results are 1) the density measurement errors in case of using methane and standard gas as calibration gases are smaller than using methane and nitrogen gas, 2) the periodical calibration to maintain accurate density measurements is essential, and 3) the specific gravity meter is sensitive to changes of environmental conditions, especially environmental temperature surrounding the specific gravity meter.

Sulfur Poisoning of Ni Anode as a Function of Operating Conditions in Solid Oxide Fuel Cells (고체산화물 연료전지의 운전 조건에 따른 니켈 전극 황 피독 현상)

  • Lee, Ho Seong;Lee, Hyun Mi;Lim, Hyung-Tae
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.893-899
    • /
    • 2018
  • In the present study, we investigated the sulfur poisoning of the Ni anode in solid oxide fuel cells (SOFCs) as a function of operating conditions. Anode supported cells were fabricated, and sulfur poising tests were conducted as a function of current density, $H_2S$ concentration and humidity in the anode gas. The voltage drop was significant under the higher current density (${\sim}714mA/cm^2$) condition, while it was much reduced under the lower current density (${\sim}389mA/cm^2$) condition, at 100 ppm of $H_2S$. A secondary voltage drop, which occurred only at the high current density, was attributed to Ni oxidation in the anode. Thus, operation at high current density with high $H_2S$ concentration may lead to permanent deterioration in the anode. The effect of water content (10%) on the sulfur poisoning was also investigated through a constant current test (${\sim}500mA/cm^2$) at 10 ppm of $H_2S$. The cell operating with 10% wet anode gas showed a much smaller initial voltage drop, in comparison with a dry anode gas. The present study indicates that operating conditions, such as gas humidity and current density, should be carefully taken into account, especially when fuel cells are operated with $H_2S$ containing fuel.

The temperature and density distribution of molecular gas in a galaxy undergoing strong ram pressure: a case study of NGC 4402

  • Lee, Bumhyun;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.77.2-77.2
    • /
    • 2015
  • Galaxies are known to evolve passively in the cluster environment. Indeed, much evidence for HI stripping has been found in cluster galaxies to date, which is likely to be connected to their low star formation rate. What is still puzzling however, is that the molecular gas, which is believed to be more directly related to star formation, shows no significant difference in its fraction between the cluster population and the field galaxies. Therefore, HI stripping alone does not seem to be enough to fully understand how galaxies become passive in galaxy clusters. Intriguingly, our recent high resolution CO study of a subsample of Virgo spirals which are undergoing strong ICM pressure has revealed a highly disturbed molecular gas morphology and kinematics. The morphological and kinematical peculiarities in their CO data have many properties in common with those of HI gas in the sample, indicating that strong ICM pressure in fact can have impacts on dense gas deep inside of a galaxy. This implies that it is the molecular gas conditions rather than the molecular gas stripping which is more responsible for quenching of star formation in cluster galaxies. In this study, using multi transitions of 12CO and 13CO, we investigate the density and temperature distributions of CO gas of a Virgo spiral galaxy, NGC 4402 to probe the physical and chemical properties of molecular gas and their relations to star formation activities.

  • PDF

Effect of Carrier Gases on the Microstructure and Properties of Ti Coating Layers Manufactured by Cold Spraying (저온 분사 공정으로 제조된 Ti 코팅층의 미세조직 및 물성에 미치는 송급 가스의 영향)

  • Lee, Myeong-Ju;Kim, Hyung-Jun;Oh, Ik-Hyun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.24-32
    • /
    • 2013
  • The effect of carrier gases (He, $N_2$) on the properties of Ti coating layers were investigated to manufacture high-density Ti coating layers. Cold spray coating layers manufactured using He gas had denser and more homogenous structures than those using $N_2$ gas. The He gas coating layers showed porosity value of 0.02% and hardness value of Hv 229.1, indicating more excellent properties than the porosity and hardness of $N_2$ gas coating layers. Bond strengths were examined, and coating layers manufactured using He recorded a value of 74.3 MPa; those manufactured using $N_2$ gas had a value of 64.6 MPa. The aforementioned results were associated with the fact that, when coating layers were manufactured using He gas, the powder could be easily deposited because of its high particle impact velocity. When Ti coating layers were manufactured by the cold spray process, He carrier gas was more suitable than $N_2$ gas for manufacturing excellent coating layers.