• Title/Summary/Keyword: Gas Cooling

Search Result 1,085, Processing Time 0.031 seconds

Analysis of Electric Substitution Effects by the Gas Consumption and Characteristics of Gas Cooling System (냉방기기 사용량과 특성을 고려한 가스냉방기기의 전력대체 효과 분석)

  • Park, Rae-Jun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.669-675
    • /
    • 2012
  • Recently, the amount of electrical heat pump(EHP), a electrical conditioning equipment, is sharply increasing due to the luxury and multi-story trend of building. Accordingly, the cooling load that occupying substantial part of summer electric consumption has increased dramatically, making difficulties in domestic supply of electricity in summer. There are some efforts to replace it with an alternative cooling equipment such as gas heat pump(GHP), a gas cooling equipment, in order to solve the problem of summer electricity supply through reducing the summer electricity peak. It is rare, however, to find studies on the actual effects of GHP on the reduction of summer electricity peak. This study, therefore, estimated the effects of the GHP on the summer electricity peak by the gas consumption and characteristics of gas cooling systems. In addition, electric substitution effects by gas cooling systems were analyzed through case studies in the summer of 2010.

A Study on the Evaluation of Cooling Demand using Cooling Gas Sales (냉방용 가스사용을 중심으로 추정한 냉방전력수요 평가)

  • KIM C.S.;Rhee C.H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.660-662
    • /
    • 2004
  • Cooling demand in Korea has increased constantly. Furthermore, an evaluation and savings of cooling demand has impacted on summer DSM and investment in Korea. Absorbed cooling system uses gas. It could achieve reductions in summer peak load and increase gas demand simultaneously. However its efficiency rate is lower than electric system. Gas cooling system uses separate meter. Therefore we could analyze monthly cooling demand and derive annual uses pattern. This paper analyzes demand pattern of gas cooling and its effects on electricity savings. Also this paper presents the course of policy in electricity sector on spreading of gas cooling measures.

  • PDF

Analysis of Electric Power Peak-Cut Effect by Gas Cooling (가스냉방 전력대체효과 분석)

  • Jeong, Si-Young;Kim, Dae-Hwan;Park, Ki-Woong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.208-211
    • /
    • 2009
  • To reduce the peak demand the promotion of gas cooling(absorption chillers and GHPs) is required. In this study the effect of electric power peak-cut has been analyzed using two methods. One is based on monthly LNG consumption data and the other is using the gas cooling capacity installed. Both methods agreed well with each other within the uncertainty of 20%. It was found that the gas cooling had the peak cut effect of 1,500-2,000 MW for recent 5 years (2003 - 2007). The ratio of gas cooling to the whole cooling demand was 12-15%, which is needed to be increased.

  • PDF

Benefit-Cost Analysis in Accordance with Replacement of Electrical Cooling System by Gas Cooling System using the California Standard Test (캘리포니아 표준테스트 방법을 사용한 전기냉방기기의 가스냉방기기 대체에 따른 편익비용분석)

  • Park, Rae-Jun;Song, Kyung-Bin;Won, Jong-Ryul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1774-1781
    • /
    • 2012
  • There are some efforts to improve the performance of electrical heat pump(EHP) and replace it with an alternative cooling equipment such as gas engine-driven heat pump(GHP), a gas cooling equipment, in order to solve the problem of summer electricity supply through reducing the summer electricity peak. This paper analyzes cost-benefit in accordance with replacement of electrical cooling system by gas cooling system using california standard test and sensitivity analysis of some scenarios.

Structural Analysis of Gas Generator Regenerative Cooling Chamber (재생냉각형 가스발생기 챔버 구조해석)

  • Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1046-1052
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which was operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreased the thermal load and strain of the cooling channel structure. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

Structural Analysis of Gas Generator Regenerative Cooling Chamber (가스발생기 재생냉각 챔버 구조해석)

  • Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.802-807
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was also conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which is operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion data were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreases the thermal load and strain of the cooling channel. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

  • PDF

Validation of Gas Turbine Combustor Cooling Design by Conjugate Heat Transfer Analysis (CHT 해석을 통한 가스터빈 연소기 냉각 설계 검증)

  • Shim, Youngsam;Partk, Jungsoo;Kim, Hokeun;Chon, Muhwan;Ryu, Jewook
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.271-272
    • /
    • 2015
  • Gas turbine combustors is critical part due to high temperature operating conditions and the optimization of cooling design is required to avoid combustor failure. In gas turbine combustor, effusion cooling, impingement cooling and thermal barrier coating (TBC) are commonly used to improve cooling characteristics. In conceptual design, these cooling schemes are designed by 1D heat transfer calculation. Therefore, these design should be validated ted by nemurical or experiment methods. In this study, Conjugate Heat Transfer (CHT) analysis is performed for validation of gas turbine combustor cooling design.

  • PDF

Improvement of Cooling Technology through Atmosphere Gas Management

  • Renard, Michel;Dosogne, Edgar;Crutzen, Jean-Pierre;Raick, Jean-Marc;Ma, Jia Ji;Lv, Jun;Ma, Bing Zhi
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.217-222
    • /
    • 2009
  • The production of advanced high strength steels requires the improvement of cooling technology. The use of high cooling rates allows relatively low levels of expensive alloying additions to ensure sufficient hardenability. In classical annealing and hot-dip galvanizing lines a mixing station is used to provide atmosphere gas containing 3-5% hydrogen and 97-95% nitrogen in the various sections of the furnace, including the rapid cooling section. Heat exchange enhancement in this cooling section can be insured by the increased hydrogen concentration. Drever International developed a patented improvement of cooling technology based on the following features: pure hydrogen gas is injected only in the rapid cooling section whereas the different sections of the furnace are supplied with pure nitrogen gas; the control of flows through atmosphere gas management allows to get high hydrogen concentration in cooling section and low hydrogen content in the other furnace zones. This cooling technology development insures higher cooling rates without additional expensive hydrogen gas consumption and without the use of complex sealing equipments between zones. In addition reduction in electrical energy consumption is obtained. This atmosphere control development can be combined with geometrical design improvements in order to get optimised cooling technology providing high cooling rates as well as reduced strip vibration amplitudes. Extensive validation of theoretical research has been conducted on industrial lines. New lines as well as existing lines, with limited modifications, can be equipped with this new development. Up to now this technology has successfully been implemented on 6 existing and 7 new lines in Europe and Asia.

The Characteristics of Compound Layers Formed during Plasma Nitrocarburising in Pure Iron (플라즈마 침질탄화처리된 순철의 화합물층 특성)

  • Cho, H.S.;Lee, S.Y.;Bell, T.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.143-150
    • /
    • 2000
  • Ferritic plasma nitrocarburising was performed on pure iron using a modified DC plasma unit. This investigation was carried out with various gas compositions which consisted of nitrogen, hydrogen and carbon monoxide gases, and various gas pressures for 3 hours at $570^{\circ}C$. After treatment, the different cooling rates(slow cooling and fast cooling) were used to investigate its effect on the structure of the compound layer. The ${\varepsilon}$ phase occupied the outer part of the compound layer and ${\gamma}^{\prime}$ phase existed between the ${\varepsilon}$ phase and the diffusion zone. The gas composition of the atmosphere influenced the constitution of the compound layer produced, i.e. high nitrogen contents were essential for the production of ${\varepsilon}$ phase compound layer. It was found that with increasing carbon content in the gas mixture the compound layer thickness increased up to 10%. In the gas pressure around 3 mbar, the compound layer characteristics were slightly effected by gas pressure. However, in the low gas pressure and high gas pressure, the compound layer characteristics were significantly changed. The constitution of the compound layer was altered by varying the cooling rate. A large amount of ${\gamma}^{\prime}$ phase was transformed from the ${\varepsilon}$ phase during slow cooling.

  • PDF

The Cooling Performance Enhancement of a Variable Speed Heat Pump Using Gas Injection Technique (가스인젝션 기술을 적용한 공기열원 가변속 열펌프의 냉방성능 향상에 관한 연구)

  • Jeong, Min-Woo;Heo, Jae-Hhyeok;Jung, Hae-Won;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.425-432
    • /
    • 2009
  • In this study, the improvement of cooling capacity by applying gas injection technique in a two-stage heat pump using R410A was experimentally investigated. A twin rotary type compressor with gas injection was applied to the heat pump system. The optimum refrigerant charge for the injection and the non-injection cycles was selected to achieve the maximum COP at the cooling standard condition. The injection cycle showed less optimum refrigerant charge than that of the non-injection cycle. The cooling performances of the injection and the non-injection cycles were measured and compared by varying compressor frequency from 40 to 90 Hz. The cooling capacity of the gas injection cycle was 1.6% -11.3% higher than that of the non-injection cycle. The COP of the gas injection cycle was 13.7% to 28.9% higher than that of the non-injection cycle at the same cooling capacity. The heat pump system showed stable operation after 30% of the injection valve opening.