• Title/Summary/Keyword: Gas Combustion

Search Result 3,050, Processing Time 0.023 seconds

Effect of low H2 content in natural gas on the Combustion Characteristics of Gas Turbine (천연가스 내 미량의 수소함량이 가스터빈의 연소특성에 미치는 영향)

  • Lee, Min Chul;Park, Seik;Kim, Sungchul;Yoon, Jisoo;Joo, Sungpeel;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.109-110
    • /
    • 2013
  • This paper describes gas turbine combustion characteristics of synthetic natural gas which contains a small amount hydrogen content. By conducting ambient pressure high temperature combustion test at gas turbine relevant combustor geometry, the combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, nozzle and dump plane, and flame structure from high speed OH chemiluminescence images were investigated when changing hydrogen content from zero to 5%. From the results, qualitative and quantitative relationships are derived between key aspects of combustion performance, notably NOx/CO emission and combustion instability. Natural gas containing hydrogen up to 5% does not show significant difference in view of all combustion characteristics except combustion instability. Only up to 1% hydrogen addition could not change the pressure fluctuation and phase gas between fluctuations of pressure and heat release. From the results, it can be concluded that synthetic national gas which contains 1% of hydrogen can be guaranteed for the stable and reliable operation of natural gas firing gas turbine.

  • PDF

Study on the control of fuel-air ratio ofgas swirl burner (가스 스월버너의 공연비 제어에 관한 연구)

  • Kim, I.K.;Kim, Y.S.;Kim, Y.H.;Kim, K.S.;Kim, J.W.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.129-138
    • /
    • 1999
  • In this paper, our main issue is that establishing the control procedure of continuous gas flow rate according to combustion fan RPM. For this, first, we decide the optimum operating condition of gas swirl burner through analysis of combustion characteristics - thermal efficiency, combustion efficiency and exhaust gases such as CO, $CO_{2}$, $O_{2}$, $NO_{x}$ and THC. Second, fuel gas flow rate of gas valve is decided with considering excess air ratio and combustion fan RPM is decided by the target of combustion air flow rate. Finally, experimental operating equation is acquired by regression for gas valve and combustion fan. This equation is the control equation of continuous gas flow rate and always gas flow rate is decided by combustion fan operating RPM.

  • PDF

NOx Emissions in Flameless Combustion of Kerosene-Air Mixture Jets Injected into Hot Burned Gas Stream from Combustion Wall

  • Aida, Naoki;Hayashi, Shigeru;Yamada, Hideshi;Kawakami, Tadashige
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.449-452
    • /
    • 2004
  • “Flameless combustion” of lean to ultra lean mixtures, supported by high-temperature burned gas, can resolve the dilemma between complete combustion versus ultra-low NOx emissions in gas turbine combustors. The characteristics of NOx emissions and combustion in “lean-lean” two-stage combustion were investigated for fuel vapor and droplets / air mixture jets injected from the main injection tube that was placed perpendicular to the combustor wall into the primary hot burned gas prepared by combustion of lean mixtures on a perforated flame holder. The present results clearly show that the ultra-low NOx combustion supported by the reaction of lean mixtures well mixed with the hot burned gas from the primary stage is much more advantageous in achieving ultra-low NOx emissions while maintaining high combustion efficiency.

  • PDF

Status and perspectives of the advanced catalytic combustion (촉매연소의 신기술 동향)

  • Kang, Sung-Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.299-308
    • /
    • 2003
  • This paper provides a review of the status and of the perspectives of advanced catalytic combustion for ultra clean combustion of gas turbines and for industrial combustors. The development of catalytic materials and their combustion techniques for gas turbines are briefly reported. The fuel-rich approaches to catalytic combustion are mentioned for a new technology of thermal- and fuel-NOx control. The fuel-rich catalytic combustion are also applicable to the combustor of ceramic gas turbine, and to the combustion of biomess and municipal waste sludge. Some extended technologies of combustion synthesis are introduced for the synthesis of carbon nanotube and of Perovskite combustion catalysts

  • PDF

Effects of Natural Gas Composition on Combustion Characteristics in a Gas Engine (쳔연가스 연료조성이 엔진 연소특성에 미치는 영향)

  • 이중성;유현석;윤영석;한정옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.32-41
    • /
    • 1999
  • Natural gas is an attractive fuel in view of environment benefits due to its flow carbon-to-hydrogen ratio. However, its compositions and properties are varied depending upon production regional groups. Therefore, study on the combustion characteristics of natural gas engines with a variety of compositions has been demanded for the efficient application of gas engines. This study aims to investigate the effects of gas composition on engine combustion characteristics. It was found that , by controlling an engine with fixed fuel nozzle area, power and heat release were subject to Wobbe Index. And at fixed excess air ratios, power and heat release were subject to low heating value of unit mixture . In addition, in case of constant nozzle area, combustion duration was found to be inversely proportional to CP(Combustion Potential), and the condition of fixed excess air ratios showed no change in combustion duration, regardless of CP.

  • PDF

Combustion Instability Mechanism of a Lean Premixed Gas Turbine Combustor

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.906-913
    • /
    • 2003
  • Lean premixed combustion has been considered as one of the promising solutions for the reduction of NOx emissions from gas turbines. However, unstable combustion of lean premixed flow becomes a real challenge on the way to design a reliable, highly efficient dry low NOx gas turbine combustor. Contrary to a conventional diffusion type combustion system, characteristics of premixed combustion significantly depend on a premixing degree of combusting flow. Combustion behavior in terms of stability has been studied in a model gas turbine combustor burning natural gas and air. Incompleteness of premixing is identified as significant perturbation source for inducing unstable combustion. Application of a simple convection time lag theory can only predict instability modes but cannot determine whether instability occurs or not. Low frequency perturbations are observed at the onset of instability and believed to initiate the coupling between heat release rate and pressure fluctuations.

Low NOx MILD Combustion for Sawdust Fuel (폐목 톱밥 연료의 저NOx MILD연소)

  • Shim, Sung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.153-156
    • /
    • 2008
  • MILD combustion has been successfully applied to gaseous fuels and few commercial systems are now in operation. Extending MILD combustion applicability to solid fuel of sawdust is the focus of the present work. The MILD combustion furnace at the University of Adelaide in Australia was used in this study. A measurement of $O_2$ and CO emissions have been carried out in parallel with consideration of NOx emission and compared in each modes of conventional natural gas combustion, natural gas MILD combustion, NOx emission in natural gas MILD combustion mode can be reduced to 20% in comparison with conventional combustion. Emission in cases of air carrying sawdust combustion and $CO_2$ carrying sawdust combustion were also compared. Air and $CO_2$ were sued as a carry gas for the sawdust. It was found that MILD conditions are possible for sawdust particles of less than $355{\mu}m$ without additional air pre-heating. It was also found that when using $CO_2$ as the carry gas the flame inside the furnace was not visible anymore and that NOx emission dropped to less than two folds.

  • PDF

A cause analysis of Noise & Vibration of Gas Heater (가스히터의 소음 진동 원인 분석)

  • Koh, Jae-Pil;You, Hyun-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.9-13
    • /
    • 2009
  • A cause of noise and vibration which come from a Combustion of gas heater are a combustion roar and Combustion oscillation. A character of a combustion roar is that sound pressure is distribute with broad band frequency. otherwise, The presence of combustion oscillation caused by positive Feed Back in Combustion Chamber break out a noise and vibration. Accordingly, The method that be solved a noise and vibration is to make each natural frequency different frequency. first, in order to solve problem, we control ratio of fuel and air. that is, Keep away resonance. second, in order to changing natural frequency of Combustion Chamber, We changed the shape of Economizer.

  • PDF

Effect of exhaust gas dilution rate on formation of flameless combustion using liquid fuel (액체연료 무화염형성에 미치는 배기가스희석율의 영향)

  • Cha, Chun Loon;Lee, Ho Yeon;Hwang, Sang Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.301-303
    • /
    • 2014
  • Flameless combustion, well known as MILD (Moderate Intensity Low oxygen Dilution) combustion or CDC(Colorless Distributed Combustion), is considered as one of the promising technology for achieving low NOx and CO emissions with improving thermal efficiency of combustion system. In this paper, the effects of exhaust gas dilution rate on formation of flameless combustion of liquid fuel were analyzed using three-dimensional numerical simulations for application of gas turbine combustor with high power density. Results show that the local high temperature region was decreased and flame temperature was spatially uniformly distributed due to higher dilution rate of burnt gas as similar pattern of gas phase flameless combustion. But the evaporation and mixing process of liquid fuel are found to be another important factors for formation of flameless combustion.

  • PDF

A Study on the Characteristics of Mixed Combustion for Hydrox Gas (Hydrox Gas 혼합연소특성 에 관한 연구)

  • Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.230-234
    • /
    • 2010
  • Hydrox gas which is the mixed gas of hydrogen and oxygen gained fromwater electrolysis is one of the new clean energy sources and thus is researched and commercialized actively. Especially, it can be replaced the fossil energy and shows the better quality compared to the conventional energy such as LPG or acetylene gas. The mixed gas of hydrogen and oxygen is gained from water electrolysis reaction. It has constant volume ratio 2:1 of hydrogen and oxygen, and it is used as a source of thermal energy by combustion reaction. Further, hydrox gas is nearly a mixed ideal gas combusting itself completely and its combustion shows anunique characteristics of implosion. In this study, temperature rise effects on hydrox gas content through mixed combustion test of kerosene and hydrox gas and LPG and hydrox gas are investigated. it is also confirmed that economy of mixed combustion of hydrox gas as effective energy is fairly probable.