• Title/Summary/Keyword: Gas Chromatography/mass spectrometry

Search Result 979, Processing Time 0.026 seconds

A Study on the Hydrolysis and Analysis of o-Chlorobezylidenemalononitrile (o-Chlorobenzylidenemalononitrile의 가수분해 및 분석에 관한 연구)

  • Park, Sung-Woo;Kim, Nam-Yee;Kim, Dong-Hwan;Hong, Sung-Work;Sung, Nack-Do;Kim, Il-Kwang;Oh, In-Kio
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.443-454
    • /
    • 1992
  • The analysis, hydrolysis mechanism, oxidation, reduction, thermal decomposition and metabolism of irritant materials such as chloroacetophenone isomers, bromophenylacetonitrile isomers, o-chlorobenzylidenemalononitrile(CS), and ethylisothiocyanate, etc. are interested in forensic science. We had studied hydrolysis of CS in 10% MeOH-$H_2O$ and 10% dioxane-$H_2O$ at pH 1.0~11.0 and various temperatures. As a result, we identified o-chlorobenzaldehyde and malononitrile that were formed by hydrolysis of CS by using gas chromatography/mass spectrometry, UV/Vis spectrometry, and polarographic method.

  • PDF

Acaricidal activity and chemical composition of essential oil derived from the Albizziae julibrissin barks

  • Park, Jun-Hwan;Lee, Sang-Guei;Kim, Jeong-Moon;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.125-128
    • /
    • 2016
  • The chemical compositions of the essential oil extracted from Albizziae julibrissin barks were analyzed by Gas chromatography-Mass spectrometry spectrometry. Fourteen components were identified, representing 89.23 % of the total oil composition. The analysis of the essential oil revealed that the essential oil contains 14 compounds, accounting for 89.23 % of the total oil. Hexanoic acid was the principal component (41.43 %) of the essential oil, followed by 4,4,6-trimethyl-cyclohex-2-en-1-ol (11.16 %), palmitic acid (9.00 %), 2-pentylfuran (5.66 %), 2-butyl-2-octenal (4.12 %), linoleic acid (3.10%), amyl hexanoate (3.01%), (E,E)-2,4-decadienal (2.49 %), 2-hexylthiophene (2.47 %), caprylic acid (2.13 %), ${\delta}-undecalactone$ (1.52 %), heptanoic acid (1.27 %), 3,5-octadien-2-ol (0.99 %), and 2-octenal (0.88 %). The acaricidal activity of the A. julibrissin oil was tested against Dermatophagoides farina, D. pteronyssinus and Tyrophagus putrescentiae by the fumigant bioassay. Based on the $LD_{50}$ values, the essential oil exhibited strong acaricidal activities against D. farinae ($LD_{50}$, $4.88{\mu}g/cm^3$), D. pteronyssinus ($2.44{\mu}g/cm^3$), and T. putrescentiae ($1.22{\mu}g/cm^3$). These results indicate that A. julibrissin oil could be a source of acaricidal agents for mite control.

Analyzing Co-planar PCBs in Food by HRGC/HRMS with Isotopic Dilution Method (동위원소희석법 HRGC/HRMS에 의한 식품 중 Co-planar PCBs 분석)

  • Choi, Dongmi;Suh, Junghyuck;Kim, Minjung;Hong, Mooki;Kim, Changmin;Song, Insang
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.325-332
    • /
    • 2003
  • To analyze co-planar PCBs in food, the isotopic dilution method by high resolution gas chromatography/high resolution mass spectrometry was applied. Among 209 PCB congeners, 12 congeners (#77, #81, #126, #169, #105, #114, #118, #123, #156, #157, #167 and #189) were chosen as target compounds that were toxic congeners re-assessed by WHO in 1998. Milk and milk products including cheese and butter were collected as food samples. Samples were homogenized, spiked with the known amount of the standard mixture and extracted. After extraction, extracts were cleaned up by sulfuric acid impregnated silica gel, purified on silica gel and alumina column chromatography and then analyzed by HRGC/HRMS. As results, the overall recoveries were ranged from 83% to 106% and the limit of detection was about 0.1 pg/g at signal/noise>3. Levels of targets in the selected food samples were 0.001~0.107 pgWHO-TEQ/g.

Unraveling dynamic metabolomes underlying different maturation stages of berries harvested from Panax ginseng

  • Lee, Mee Youn;Seo, Han Sol;Singh, Digar;Lee, Sang Jun;Lee, Choong Hwan
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.413-423
    • /
    • 2020
  • Background: Ginseng berries (GBs) show temporal metabolic variations among different maturation stages, determining their organoleptic and functional properties. Methods: We analyzed metabolic variations concomitant to five different maturation stages of GBs including immature green (IG), mature green (MG), partially red (PR), fully red (FR), and overmature red (OR) using mass spectrometry (MS)-based metabolomic profiling and multivariate analyses. Results: The partial least squares discriminant analysis score plot based on gas chromatography-MS datasets highlighted metabolic disparity between preharvest (IG and MG) and harvest/postharvest (PR, FR, and OR) GB extracts along PLS1 (34.9%) with MG distinctly segregated across PLS2 (18.2%). Forty-three significantly discriminant primary metabolites were identified encompassing five developmental stages (variable importance in projection > 1.0, p < 0.05). Among them, most amino acids, organic acids, 5-C sugars, ethanolamines, purines, and palmitic acid were detected in preharvest GB extracts, whereas 6-C sugars, phenolic acid, and oleamide levels were distinctly higher during later maturation stages. Similarly, the partial least squares discriminant analysis based on liquid chromatography-MS datasets displayed preharvest and harvest/postharvest stages clustered across PLS1 (11.1 %); however, MG and PR were separated from IG, FR, and OR along PLS2 (5.6 %). Overall, 24 secondary metabolites were observed significantly discriminant (variable importance in projection > 1.0, p < 0.05), with most displaying higher relative abundance during preharvest stages excluding ginsenosides Rg1 and Re. Furthermore, we observed strong positive correlations between total flavonoid and phenolic metabolite contents in GB extracts and antioxidant activity. Conclusion: Comprehending the dynamic metabolic variations associated with GB maturation stages rationalize their optimal harvest time per se the related agroeconomic traits.

Phytochemicals and antioxidant activity in the kenaf plant (Hibiscus cannabinus L.)

  • Ryu, Jaihyunk;Kwon, Soon-Jae;Ahn, Joon-Woo;Jo, Yeong Deuk;Kim, Sang Hoon;Jeong, Sang Wook;Lee, Min Kyu;Kim, Jin-Baek;Kang, Si-Yong
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.191-202
    • /
    • 2017
  • Chemical compounds from four different tissues of the kenaf plant (Hibiscus cannabinus), a valuable medicinal crop originating from Africa, were examined to determine its potential for use as a new drug material. Leaves, bark, flowers, and seeds were harvested to identify phytochemical compounds and measure antioxidant activities. Gas chromatography mass spectrometry analyses identified 22 different phytocompounds in hexane extracts of the different parts of the kenaf plant. The most abundant volatile compounds were E-phytol (32.4%), linolenic acid (47.3%), trisiloxane-1,1,1,5,5,5-hexamethyl-3,3-bis[(trimethylsilyl)oxy] (16.4%), and linoleic acid (46.4%) in leaves, bark, flowers, and seeds, respectively. Ultra-high performance liquid chromatography identified the major compounds in the different parts of the kenaf plant as kaemperitrin, caffeic acid, myricetin glycoside, and p-hydroxybenzoic acid in leaves, bark, flowers, and seeds, respectively. Water extracts of flowers, leaves, and seeds exhibited the greatest DPPH radical scavenging activity and SOD activity. Our analyses suggest that water is the optimal solvent, as it extracted the greatest quantity of functional compounds with the highest levels of antioxidant activity. These results provide valuable information for the development of environmentally friendly natural products for the pharmaceutical industry.

Biodegradation of Crude oil by Marine Bacterium Pseudomonas sp. CHCS-2 and Composition of the Biosurfactant (해양세균 Pseudomonas sp. CHCS-2에 의한 원유분해 및 생물유화제의 성분 분석)

  • 김학주;김봉조;하순득;황선희;공재열
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.192-197
    • /
    • 1999
  • marine bacterium Pseudomonas sp. CHCS-2 produced the biosurfactant in the culture broth which contained 2%(w/v) arabian light crude oil and the productivity of biosurfactant was increased with the addition of glucose. The crude oil in the culture broth was degraded by this strain and carbon chain of $_nC_{12}~_nC_{22}$ was completely degradaded during the incubation for 196 h. The crude biosurfactant was purified by Amberlite XAD-7, Sepharose CL-4B and DEAE-Sepharose CL-6B column chromatography. Therefore, 0.21g/L of the purified biosurfactnat was obtained. The purified biosurfactant was a type of lipoprotein and the molecular weight was estimated as 67kDa by SDS-PAGE. The lipid composition was identified as octadecanoic acid by gas chromatography/mass spectrometry. And then, the N-terminal amino acid sequence of the protein was determined as Ser-Val-lle-Asn-Thr-lle-X-Met-lle-Gly-Gln-Gln- and the sequence did not show homology to any other known lipoprotein. Therefore, the purified lopoprotein was predicted novel biosurfactant.

  • PDF

Biological Treatment of TNT-containing Wastewater (pink water) by Stenotrophomonas maltophilia OK-5, and RT-PCR Quantification of the Nitroreductase (pnrB) Gene (Stenotrophomonas maltophilia OK-5에 의한 TNT 함유폐수 (pink water)의 생물학적 처리 와 Nitroreductase (pnrB) 유전자의 RT-PCR 정량화)

  • Cho, Su-Hee;Cho, Yun-Seok;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.556-562
    • /
    • 2009
  • The biological treatment of TNT-containing wastewater, known commonly as pink water, was investigated using a stirred tank reactor with Stenotrophomonas maltophilia OK-5 bacterial culture. S. maltophilia OK-5 exhibited effective degradation of TNT contained in pink water, completely degrading TNT (100 mg/L) within 6 days of incubation. The dark-red brown color derived from Hydride-Meisenheimer complex became more pronounced during the incubation period, which was determined quantitatively. High-pressure liquid chromatography was used to measure residual TNT, which also resolved the metabolic intermediates (i.e., 2,4-dinitrotoluene, 2,6-dinitrotoluene and 2,4-dinitro-6-hydroxytoluene). Gas chromatography-mass spectrometry was used to verify these intermediates. Quantification of the nitroreductase (pnrB) gene isolated from S. maltophilia OK-5 growing in pink water was performed with real-time PCR. The amount of pnrB gene copies increased to $10^3$-fold after 5 days of incubation time.

Application of Enzymatic method to Determine Choline Concentration in Bovine Blood and Muscle (소의 혈액 및 근육 중 choline 농도 분석을 위한 효소측정법의 적용기법의 개발)

  • Kim, Young-Il;Jung, Won-Chul;Shon, Ho-Yeong;Kim, Suk;Hur, Yoen;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.3
    • /
    • pp.271-275
    • /
    • 2008
  • Choline is important an organic compound for normal membrane function, acetylcholine synthesis, lipid transport, and methyl metabolism. In biological tissues and foods, there are multiple choline compounds that contribute to choline content. There are so many analytical methods for choline determination, such as radioisotopic, high-performance liquid chromatography, and gas chromatography/mass spectrometry. However, these existing methods are expensive, unmanageable, and time-consuming. In this study, we modified enzymatic method, which is applicable for the determination of choline in milk and infant formulas, and applied to bovine serum and muscle. The calibration curves were linear with higher correlation coefficients than 0.994. Recoveries obtained by calibration curves from the spiked bovine serum and muscle samples varied between 70.6 and 85.2%. The method may be suitable for use as a routine method in the determination of choline for biological tissue and food samples.

Effect of Bisphenol A on Ovarian Steroidogenesis in Longchin Goby (Chasmichthys dolichognathus) (Bisphenol A가 점 망둑 (Chasmichthys dolichognothus)의 난소 스테로이드 호르몬 대사에 미치는 영향)

  • BAEK Hea-Ja;PARK Myoung-Hee;LEE Young-Don;KIM Hyung-Bae;KIM Jae-Won;YOO Myoung-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.3
    • /
    • pp.192-196
    • /
    • 2004
  • The in vitro effect of bisphenol A (BPA) on ovarian steroidogenesis of the longchin goby (Chasmichthys dolichognathus) was investigated. Oocytes taken during the maturing phase (vitellogenic, fully vitellogenic or germinal vesicle breakdown stage) were incubated with BPA (100 ng/mL) in the presence of exogenous precursor $^{3}H-17\alpha\;hydroxyprogesterone\;(^{3}H-17\alphaOHP).$ Steroids were extracted from the media and the isolated oocytes, and the extracts were separated and identified by thin layer chromatography and gas chromatography-mass spectrometry. The identities of the major metabolites were progestogens $[17{\alpha}-hydroxy,20{\alpha}-dihydroprogesterone\;(17{\alpha}20{\alpha}OHP)\;and\;17{\alpha}-hydrxy,20{\beta}-dihydroprogesterone\;(17{\alpha}20{\beta}OHP),$ androgens [androstenedione (A4) and testosterone (T)] and estrogens [estrone $(E_1)\;and\;estradiol-17{\beta}(E_2)].$ BPA treatment inhibited production of estrogens in all the maturing phases and progestogens in the germinal vesicle migrating stage. Percentage yield of estrogens was decreased with increased yield of androgens. In conclusion, BPA had an inhibitory effect on the conversion of $^3H-17\alphaOHP$ to estrogens and progestogens. These results demonstrate that BPA can act either estrogenic or anti-estrogenic effects.

First record of a marine microalgal species, Micractinium singularis (Trebouxiophyceae) isolated from Janghang Harbor, Korea

  • Jo, Seung-Woo;Kang, Nam Seon;Chae, Hyunsik;Lee, Jung A;Kim, Kyeong Mi;Yoon, Moongeun;Hong, Ji Won;Yoon, Ho-Sung
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.1
    • /
    • pp.61-70
    • /
    • 2020
  • A eukaryotic microalga was isolated from seawater in Janghang Harbor, Korea and its morphological, molecular, and physiological characteristics were investigated. Due to its simple morphology, no distinctive characters were found by morphological observation, such as light microscope or scanning/transmission electron microscopy (S/TEM). However, molecular phylogenetic evidence inferred from the concatenated small subunit (SSU) 18S rRNA and internal transcribed spacer (ITS) sequence data indicated that the isolate belonged to the newly described Micractinium singularis. Furthermore, it was clustered with Antarctic Micractinium strains and it also showed a psychrotolerant property, surviving at temperatures as low as 5℃. However, its optimal growth temperatures range from 15℃ to 25℃, indicating that this microalga is a mesophile. Additionally, gas chromatography-mass spectrometry (GC/MS) analysis showed that the isolate was rich in nutritionally important omega-3 polyunsaturated fatty acid, and high-performance liquid chromatography analysis (HPLC) revealed that the high-value antioxidant lutein was biosynthesized as an accessory pigment by this microalga, with glucose as the major monosaccharide. Therefore, in this study, a Korean marine M. singularis species was discovered, characterized, and described. It was subsequently added to the national culture collections.