• Title/Summary/Keyword: Gardenia blue color

Search Result 25, Processing Time 0.025 seconds

Characterization of Natural Gardenia Color with Systhetic Color (천연치자색소의 합성색소와의 특성 비교)

  • 김희구;김옥도;이상준
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.5
    • /
    • pp.506-512
    • /
    • 1998
  • In order to replance systhetic colors by natural colors as food additive, properties of Gardenia yellow color and Gardenia blue color were compared with Food yellow No. 4 and Food blue No. 1. Color differeance between Food yellow No. 4 and Gardenia yellow color was 7.55. Thermal stability of Food yellow No. 4 was above 99%. On the other hand, in case of Gardenia yellow color, showed adove 90% of residual color units in 8$0^{\circ}C$$\times$30min and 10$0^{\circ}C$$\times$30min at pH 7.0 but 75% in 121$^{\circ}C$$\times$15min. Difference of light stability between Food yellow No. 4 and gardenia yellow color was about 18%. Addition of ascorbic acid was increased about 6% in light stability. Color difference between Food blue No. 2 and Gardenia blue color was 107. Thermal stability of Food blue No. 2 was above 99%. But Gardenia blue color showed 92% of residual color units in 8$0^{\circ}C$$\times$30min and 10$0^{\circ}C$$\times$30min at pH 7.0 but 90% in 121$^{\circ}C$$\times$15min. Difference of light stability between Food blue No. 4 and Gardenia blue color was about 8%. Addition of -tocopherol was increased about 4% in light stability of Gardenia blue color.

  • PDF

Production of Gardenia Blue Color from Gardenia Waste by the Bacillus subtilis (Bacillus substilits에 의한 치자황색소 부산물로부터 치자청색소의 생산)

  • 김희구;이상준
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.6
    • /
    • pp.606-611
    • /
    • 1998
  • For waste recyle, we were investigated on Gardenia blue color production using Gardenia by-product by Bacillus subtilits. Optimum conditions for producing blue pigment were found to be 30$^{\circ}C$, initial pH 6.5, glucose as a carbon source 3% and yeast extract as a nitrogen source 0.5%, respectively. Optimum conditions for fermentor culture were agitation speed 400rpm, aeration 2 vvm and inoculum 5%. The optimum perculture time for inoculum was 20 hrs for blue pigment production.

  • PDF

미생물에 의한 치자 Iridoid 배당체 변환 청색소의 생산

  • 양승각;전기붕
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.13 no.1
    • /
    • pp.36-44
    • /
    • 1987
  • Seven bacterial strains capable of conversing Gardenia irridoidglucoside into blue color was isolated on nutrient agar plates with 0.1% water extracted solution of Gardenia's dryad seed. In the seven, strain No. C2 was most effective in the production of blue color. The optimal conditions in production of blue color were when initial pH of medium was 7.0 and cultivation temperature was 35$^{\circ}C$. In 5 $\ell$-Jar fermantor, the powder of blue color was produced about 15% (W/W). And the color was relatively stable in our test.

  • PDF

Conversion Patterns of Yellow Pigment from Gardenia jasminoides by Staphylococcus epidermidas and Lactobacillus plantarum (Staphylococcus epidermidas와 Lactobacillus plantarum에 의한 치자황색소의 변환양상)

  • Jeong, Hyung-Seok;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1184-1187
    • /
    • 1999
  • The Gardenia jasminoides yellow pigment and converted pigments were completely separated by Amberlite XAD-4 column chromatography. These Pigments were gel filtrated on Sephadex LH-20 column chromatography. The characteristics of absorption spectra of eluate and fractionated pigments were investigated. The pigment converted by Lactobacillus plantarum showed a single blue color with an absorption peak at 588 nm and its molecular size was bigger than that of crocetin. The pigment, converted by Staphylococcus epidermidis, Showed blue-green color, which was composed of yellow color with an absorption peak at 418 nm and blue color at 588 nm. Molecular size of the yellow pigment was smaller than crocetin and that of blue color.

  • PDF

Sensory Characteristics of Dasik containing Gardenia blue pigments (치자 청색소를 첨가한 녹말다식의 특성)

  • 추수진;윤혜현;한태룡
    • Korean journal of food and cookery science
    • /
    • v.16 no.3
    • /
    • pp.255-259
    • /
    • 2000
  • The effects of the concentrations of Gardenia blue pigments and sugar types(honey and oligosugar) on the sensory quality characteristics of starch Dasik were investigated to develop a new blue colored starch Dasik. The blueness(-b value) was increased with the increase of blue pigment, while lightness(L value) was decreased. TPA values showed that hardness, fracturability, gumminess and chewiness were increased with the increase of blue pigment significantly(p<0.05), especially in honey-Dasik. In sensory evaluation, honey-Dasik with 0.04%-blue pigment showed higher scores than any other samples, especially in color, sweetness and overall acceptability, but was not significantly different.

  • PDF

Manufacturing Regenerated Woody Dyed Fiber from Waste MDF Using Natural Dyes

  • JU, Seon-Gyeong;ROH, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.154-165
    • /
    • 2020
  • To assign the functionality of the regenerated fiber from waste MDF(wMDF) made of pitch pine, we examined the dyeing characteristics of natural dyes, sappan wood as a polychromatic natural red series, monochromatic gardenia as a yellow series, and indigo blue series. For nonemordanting dye, the colors of regenerated fiber dyed by sappan wood and gardenia were reddish yellow (YR) and yellow (Y) series, respectively, and dyeing conditions were appropriate a 30 ~ 50 g/L of dyeing materials at 60 ℃ for 60minutes of dyeing time. We obtained regenerated woody dyed fibers (Re-WDF), YR to the red (R) series by premordanting with Al and Cu mordant for sappan wood and the purplish red (RP) series by Fe premordanting. In the case of gardenia, only Y series colors were developed in nonemordanting dye or all three mordants. Indigo dye produced Re-WDF with greenish yellow (GY) tone at 1%, green (G) tone at 3%, and blue (B) tone at 5% concentration or more. Re-WDF with indigo showed the best light fastness followed by sappan wood and gardenia. In particular, the light fastness of Re-WDF with gardenia was very poor. The light fastness was somewhat improved by premordanting(Fe>Cu>Al) both sappan wood and gardenia dyes.

Dyeing with Natural Dye (III) - Combination Dyeing- (천연염료에 의한 염색(III) -배합 염색-)

  • Nam, Sung Woo;Lee, Sang Rag;Kim, In Hoi
    • Textile Coloration and Finishing
    • /
    • v.8 no.4
    • /
    • pp.52-58
    • /
    • 1996
  • Until now, in case of natural dyeing, the appearance of medium colors were achieved by repeat dyeing with different colorants after dyeing with one colorant. In this study, however, new dyeing method for appearance of medium colors was developed by use of mixing solution of different colorants prepared with the same ratio using colorant concentrates. In combination dyeing, purple color was difficult to represent because of the Gardenia blue dye among the colorants used in this study was naby blue dye. But the other medium colors such as yellow red, green yellow, green and blue green were easily represented by use of reddish Sappan wood and yellowish Gardenia concentrates. If the natural blue dye is prepared in concentrate condition, the dyeings dyed in various colors may be obtained by combination dyeing.

  • PDF

Effects of Hue, Tone, and Dyes on Color Sensibility of Natural Dyeing (색상과 톤, 염료가 천연염색 색채 감성에 미치는 영향)

  • Lee, Eun-Ju
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.05a
    • /
    • pp.227-230
    • /
    • 2009
  • This study was aimed to determine color sensibility factors for naturally dyed fabrics and to investigate their relationship with color variables such as hue and tone and dyes. Two hundreds different fabric colors prepared by a variety of natural dyeing were subjectively evaluated by color experts, which resulted in three color sensibility factors including 'Pleasant', 'Comfort', and 'Modem'. Among hues, Yellowish shade by natural dyeing was found as more pleasant and more comfort than any others. Among main tones for natural dyeing, g(grayish) and ltg(light grayish) were more felt in 'Comfort' whereas d(dull) more in 'Pleasant'. As for dyes, Gardenia Blue, Gardenia Yellow, and Anato tended to give feelings of 'Pleasant' whereas Raw Indigo and Loess did 'Comfort'.

  • PDF

Isolation and Identification of the Yeasts from Sputum or Other Clinical Specimens Using the Medium Containing Pigments Extract of Gardenia jasminoides Fruits (치자(梔子)(Gardenia jasminoides 열매)배지(培地)를 이용한 객담(喀痰) 및 기타 병리검체내(病理檢體內) 각종(各種) 효모균류(酵母菌類)의 分離(분리) 및 동정(同定))

  • Jeong, Suk;Kim, Sin-Ok;Kim, Sang-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.38 no.3
    • /
    • pp.287-296
    • /
    • 1991
  • Colonial morphology of the various yeasts often encountered in sputum or other clinical specimens was investigated on the corn meal-potato-yeast extract agar medium (GJCPY) containing orange-yellow pigments extracted from Gardenia jasminoides fruits in hopes of differential identification on primary cultures. The results obtained are as follows. 1) Cryptococcus neoformans which is a medically important yeast and whose colony showed brown to purple brown on GJCPY medium was distinguishable not only from buff colored Cr. laurentii after one week incubation but also from Candida spp. 2) Colony color of Candida albicans, a most common species in sputum specimens and of Ca. parapsilosis, a rare isolate, remained unchanged even after 15 days incubation. 3) Ca. tropicalis, second common isolate from sputums and Ca. krusei, a rare isolate, formed a characteristic rough and wrinkled colonies that permit to differentiate them from others. 4) Rare isolates, Ca. guilliermondii and Ca. lusitaniae, turned to prussian blue within three days of incubation. 5) Torulopsis sp. and Saccharomyces cerevisiae showed glossy grayish blue or light blue after one week incubation. The findings clearly showed that Ga. jasminoides pigments medium was useful to the morphological differentiation of medically important yeasts that were often encountered in sputum or other clinical specimens.

  • PDF

Physicochemical Characteristics for the Transformation of Blue Pigments from Genipin of Gardenia jasminoides with Amino Acids (치자 Genipin과 아미노산의 청색소변환반응에 관한 물리화학적 연구)

  • Lee, Jae-Youn;Hahn, Tae-Ryong;Paik, Young-Sook
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.399-404
    • /
    • 1998
  • Genipin was obtained from hydrolysis of geniposide isolated from gardenia fruits with ${\beta}-glucosidase$. Reaction of genipin with glycine, alanine, histidine, lysine, phenylalanine and glutamate in aqueous buffer solution converted colorless starting materials to blue pigments. Effect of pH for the formation of blue pigments was tested using UV/Vis spectrophotometer. The optimum pH for the formation of blue pigments was 7.0. No pigment and trace amounts were formed at acidic (pH 3.0) and alkaline (pH 12.0) conditions, respectively. The amount and tincture of blue color were distinct with different amino acids. In contrast with lysine $({\lambda}_{max}=573\;nm)$, glycine $({\lambda}_{max}=595\;nm)$, phenylalanine $({\lambda}_{max}=602\;nm)$ and alanine $({\lambda}_{max}=595\;nm)$, the reaction of genipin with histidine $({\lambda}_{max}=601\;nm)$ and glutamate $({\lambda}_{max}=601\;nm)$ produced relatively small amounts of blue pigments. Rate constants for the formation of blue pigments from genipin with amino acids at various temperatures $(60,\;70,\;80,\;90^{\circ}C,\;pH\;7.0\;phosphate\;buffer)$ were obtained. Rate constants of genipin with basic amino acids were larger than neutral or acidic amino acids. Arrhenius activation energies of the formation of blue pigments indicated that activation energy of glycine $(E_A=9.8\;kcal/mol)$ was especially lower than those of other amino acids $(E_A=13.3{\sim}15.4\;kcal/mol)$.

  • PDF