• 제목/요약/키워드: Garbage Dumping Detection

검색결과 2건 처리시간 0.019초

관절점 딥러닝을 이용한 쓰레기 무단 투기 적발 시스템 (Garbage Dumping Detection System using Articular Point Deep Learning)

  • 민혜원;이형구
    • 한국멀티미디어학회논문지
    • /
    • 제24권11호
    • /
    • pp.1508-1517
    • /
    • 2021
  • In CCTV environments, a lot of learning image data is required to monitor illegal dumping of garbage with a typical image-based object detection using deep learning method. In this paper, we propose a system to monitor unauthorized dumping of garbage by learning the articular points of the person using only a small number of images without immediate use of the image for deep learning. In experiment, the proposed system showed 74.97% of garbage dumping detection performance with only a relatively small amount of image data in CCTV environments.

Vision-based garbage dumping action detection for real-world surveillance platform

  • Yun, Kimin;Kwon, Yongjin;Oh, Sungchan;Moon, Jinyoung;Park, Jongyoul
    • ETRI Journal
    • /
    • 제41권4호
    • /
    • pp.494-505
    • /
    • 2019
  • In this paper, we propose a new framework for detecting the unauthorized dumping of garbage in real-world surveillance camera. Although several action/behavior recognition methods have been investigated, these studies are hardly applicable to real-world scenarios because they are mainly focused on well-refined datasets. Because the dumping actions in the real-world take a variety of forms, building a new method to disclose the actions instead of exploiting previous approaches is a better strategy. We detected the dumping action by the change in relation between a person and the object being held by them. To find the person-held object of indefinite form, we used a background subtraction algorithm and human joint estimation. The person-held object was then tracked and the relation model between the joints and objects was built. Finally, the dumping action was detected through the voting-based decision module. In the experiments, we show the effectiveness of the proposed method by testing on real-world videos containing various dumping actions. In addition, the proposed framework is implemented in a real-time monitoring system through a fast online algorithm.