• Title/Summary/Keyword: Gap resonator

Search Result 87, Processing Time 0.029 seconds

Design of Dual-band Metamaterial Absorber using Two Pairs of ELC Resonators (두 쌍의 ELC 공진기를 이용한 이중 대역 메타 흡수체의 설계)

  • Lee, Hyung-Sup;Lee, Hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This paper presents a metamaterial absorber unit sell structure with four-element electric-LC resonators (ELC). In order to enhance the operating bandwidth of the proposed absorber unit cell two pairs of ELC resonators with a different size are used. The proposed unit cell shows negative permittivity and permeability when the electric field is parallel to the capacitive gap and the magnetic field is normal to the plane of ELC resonator. The simulated results show peak absorbance over 90% at two frequencies of 8.53 and 9.08 GHz, respectively.

TFBAR Lattice and Balanced Type Filter Topologies (격자형 및 평형 구조를 가지는 박막공진 여파기에 관한 연구)

  • 김건욱;구명권;육종관;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1048-1053
    • /
    • 2002
  • In this paper, thin film bulk acoustic resonator(TFBAR) lattice and balanced type filter topologies are designed and fabricated. Aluminium nitride and platinum are used for piezoelectric material and top and bottom electrodes, respectively. Air-gap is placed to avoid silicon substrate loading effect and the performance of these lattice and balanced filters is compared with ladder filters. These filters have selectivity over 15 dB for lattice type and 30 dB for balanced type and reveal wider bandwidth of the ladder filters. For balanced type filters, minor tuning procedure is not needed and they are readily available for RF filter in wireless applications.

Nonlinear response of a resonant viscoelastic microbeam under an electrical actuation

  • Zamanian, M.;Khadem, S.E.;Mahmoodi, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.387-407
    • /
    • 2010
  • In this paper, using perturbation and Galerkin method, the response of a resonant viscoelastic microbeam to an electric actuation is obtained. The microbeam is under axial load and electrical load. It is assumed that midplane is stretched, when the beam is deflected. The equation of motion is derived using the Newton's second law. The viscoelastic model is taken to be the Kelvin-Voigt model. In the first section, the static deflection is obtained using the Galerkin method. Exact linear symmetric mode shape of a straight beam and its deflection function under constant transverse load are used as admissible functions. So, an analytical expression that describes the static deflection at all points is obtained. Comparing the result with previous research show that using deflection function as admissible function decreases the computation errors and previous calculations volume. In the second section, the response of a microbeam resonator system under primary and secondary resonance excitation has been obtained by analytical multiple scale perturbation method combined with the Galerkin method. It is shown, that a small amount of viscoelastic damping has an important effect and causes to decrease the maximum amplitude of response, and to shift the resonance frequency. Also, it shown, that an increase of the DC voltage, ratio of the air gap to the microbeam thickness, tensile axial load, would increase the effect of viscoelastic damping, and an increase of the compressive axial load would decrease the effect of viscoelastic damping.

Configuration of ETDM 20 Gb/s optical transmitter / receiver and their characteristics (전기적 시분할 다중 방식을 이용한 20 Gb/s 광송,수신기의 제작 및 성능 평가)

  • Lim, Sang-Kyu;Cho, Hyun-Woo;Lyu, Gap-Youl;Lee, Jong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.295-300
    • /
    • 2002
  • We developed an optical transmitter and receiver for an electrical time division multiplexed (ETDM) 20 Gb/s optical transmission system, and experimentally investigated their characteristics. Especially, the clock extraction circuit, which is a key component in realizing broadband optical transmission receivers, was realized by using an NRZ-to-PRZ converter implemented with a half-period delay line and an EX-OR, a high-Q bandpass filter using a cylindrical dielectric resonator, and a microstrip coupled-line bandpass filter. Finally, the bit-error-rate of demultiplexed 10 Gb/s electrical signal after back to-back transmission was measured, and a high receiver sensitivity [-26.2 dBm for NRZ ($2^{7}-1$) pseudorandom binary sequence (PRBS)] was obtained

A Novel Cooling Method by Acoustic Streaming Induced by Ultrasonic Resonator (초음파 진동자에 의해 유도된 음향유동을 이용한 첨단 냉각법)

  • 노병국;이동렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.217-223
    • /
    • 2003
  • A novel cooling method induced by acoustic streaming generated by ultrasonic vibration at 30㎑ is presented. Ultrasonic vibration is obtained by piezoelectric devices and the maximum vibration amplitude of 50 m is achieved by including a horn, mechanical vibration amplifier in the system and making the complete system resonate. To investigate the enhancement of heat transfer capability of acoustic streaming, the temperature variations of heat source and air in the vicinity of heat source are measured in real-time. It is observed that acoustic streaming is instantly induced by ultrasonic vibration, resulting in the significant temperature drop due to the bulk air flow caused by acoustic streaming. In addition, it is observed that the cooling effect on the heat source is maximized when the gap between the ultrasonic vibrator and heat source coincides with the multiples of half-wavelength of the ultrasonic wave. This fact results from the resonance of the sound wave. The theoretical analysis of the dependence on the gap is also accomplished and verified by experiment. The advantage of the proposed cooling method by acoustic streaming is noise-free due to the ultrasonic vibration and maintenance-free because of the absence of moving parts. Moreover. This cooling method can be utilized to the nano and micro-electro mechanical systems, where the fan-based conventional cooling method can not be employed.

Design and Fabrication of Ka-Band NRD Guide Filter with Newly Designed Inductive Post Structure (새로운 유도성 포스트 구조를 갖는 Ka-Band NRD 가이드 필터의 설계 및 제작)

  • 김영수;류원렬;유영근;최재하
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.369-376
    • /
    • 2003
  • In this paper, Ka-Band NRD guide band pass filter with newly designed inductive post structure is proposed and analyzed with its test results. Generally, millimeter-wave filters are very sensitive in their physical dimensions, hence, it is requires extreme precisions of several micron so as to get the designed performance. In case of common NRD Guide filter with air gap coupled structure, it is fabricated with dielectric blocks coupled via air gap. In these structures, however, it was not easy to fabricate and to process of each NRD guide dielectric resonator blocks using PTFE, so it was almost impossible to assemble with several microns in precision. In this our research, however, each dielectric resonators are coupled with a pair of inductive metal post, so all resonators are located in a single NRD Guide. The dielectric parts between two pairs of posts are operated as resonators of each stage, and the positions of the post decide the couplings between resonators. The structure we suggested is suitable fur mass production, because it is very simple and easy to process. As a result of measurements, designed NRD guide inductive post filter has a superior performance. The center frequency is 39.475 GHz with 350 MHz bandwidth, insertion loss is less than 1.8 dB, and the return loss is below than -18 dB.

Design of Miniaturization Terminal Antenna for 2.4 GHz WiFi Band with MZR (MZR을 이용한 2.4 GHz WiFi 대역 소형 단말기 안테나 설계)

  • Lee, Young-Hun
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • In this paper, we implemented an on-board miniaturization antenna operating 2.4 GHz using MZR(Mu Zero Resonator). It is must be operating under the constraint that the size of the small terminal PCB should be $78{\times}38{\times}0.8mm^3$ and the size of the system should be $63{\times}38{\times}0.8mm^3$ and the size of the radiating part should be $15{\times}38{\times}0.8mm^3$. The feeding structure uses a CPW structure for stable feeding and a feeding point at the upper left of the system board. A magnetic field coupling structure is used for coupling the feeding part and the antenna. The resonance frequency of the MZR is determined by the series inductance and capacitance of the cell, so the gap between the cells, the length of the cell, the length of the interdigital capacitor, and the spacing between the radiation part and the ground plane are analyzed. The antenna was designed and fabricated using the results. The total size of the antenna including the feed structure is $20.8{\times}9.0{\times}0.8mm^3$, and the electrical length is $0.1664{\lambda}_0{\times}0.072{\lambda}_0{\times}0.0064{\lambda}_0$. The measurement result for 10 dB bandwidth, gain and directivity are 440 MHz(18.3%), 0.4405 dB, and 2.722 dB respectively. It is confirmed that the radiation pattern has omnidirectional characteristics and it can be applied to ultra small terminal antenna.