• Title/Summary/Keyword: Gap Measure

Search Result 428, Processing Time 0.025 seconds

Comparison of prosthetic models produced by traditional and additive manufacturing methods

  • Park, Jin-Young;Kim, Hae-Young;Kim, Ji-Hwan;Kim, Jae-Hong;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.294-302
    • /
    • 2015
  • PURPOSE. The purpose of this study was to verify the clinical-feasibility of additive manufacturing by comparing the accuracy of four different manufacturing methods for metal coping: the conventional lost wax technique (CLWT); subtractive methods with wax blank milling (WBM); and two additive methods, multi jet modeling (MJM), and micro-stereolithography (Micro-SLA). MATERIALS AND METHODS. Thirty study models were created using an acrylic model with the maxillary upper right canine, first premolar, and first molar teeth. Based on the scan files from a non-contact blue light scanner (Identica; Medit Co. Ltd., Seoul, Korea), thirty cores were produced using the WBM, MJM, and Micro-SLA methods, respectively, and another thirty frameworks were produced using the CLWT method. To measure the marginal and internal gap, the silicone replica method was adopted, and the silicone images obtained were evaluated using a digital microscope (KH-7700; Hirox, Tokyo, Japan) at 140X magnification. Analyses were performed using two-way analysis of variance (ANOVA) and Tukey post hoc test (${\alpha}=.05$). RESULTS. The mean marginal gaps and internal gaps showed significant differences according to tooth type (P<.001 and P<.001, respectively) and manufacturing method (P<.037 and P<.001, respectively). Micro-SLA did not show any significant difference from CLWT regarding mean marginal gap compared to the WBM and MJM methods. CONCLUSION. The mean values of gaps resulting from the four different manufacturing methods were within a clinically allowable range, and, thus, the clinical use of additive manufacturing methods is acceptable as an alternative to the traditional lost wax-technique and subtractive manufacturing.

Heat/Mass Transfer and Friction Characteristic in a Square Duct with Various Discrete Ribs -In-Lined Gap Arrangement Ribs- (덕트내 요철의 단락위치 변화에 따른 열/물질전달 및 압력강하 특성 - 정렬 단락배열 요철 -)

  • Lee, Sei-Young;Choi, Chung;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1640-1649
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements on heat/mass transfer in the cooling passage of gas turbine blades. A complex flow structure occurs in the cooling passage with rib turbulators which promote heat transfer on the wall. It is important to increase not only the heat transfer rates but also the uniformity of heat transfer in the cooling passage. A numerical computation is performed using a commercial code to calculate the flow structures and experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. A square channel (50 mm $\times$ 50 mm) with rectangular ribs (4 mm $\times$ 5 mm) is used fur the stationary duct test. The experiments focus on the effects of rib arrangements and gap positions in the discrete ribs on the heat/mass transfer on the duct wall. The rib angle of attack is 60°and the rib-to-rib pitch is 32 mm, that is 8 times of the rib height. With the inclined rib angle of attack (60°), the parallel rib arrangements make a pair of counter rotating secondary flows in the cross section, but the cross rib arrangements make a single large secondary flow including a small secondary vortex. These secondary flow patterns affect significantly the heat/mass transfer on the ribbed wall. The heat/mass transfer in the parallel arrangements is 1.5 ∼2 times higher than that in the cross arrangements. However, the shifted rib arrangements change little the heat/mass transfer from the inline rib arrangements. The gap position in the discrete rib affects significantly the heat/mass transfer because a strong flow acceleration occurs locally through the gap.

Marginal and internal fit of 3D printed provisional crowns according to build directions

  • Ryu, Ji-Eun;Kim, Yu-Lee;Kong, Hyun-Jun;Chang, Hoon-Sang;Jung, Ji-Hye
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.225-232
    • /
    • 2020
  • PURPOSE. This study aimed to fabricate provisional crowns at varying build directions using the digital light processing (DLP)-based 3D printing and evaluate the marginal and internal fit of the provisional crowns using the silicone replica technique (SRT). MATERIALS AND METHODS. The prepared resin tooth was scanned and a single crown was designed using computer-aided design (CAD) software. Provisional crowns were printed using a DLP-based 3D printer at 6 directions (120°, 135°, 150°, 180°, 210°, 225°) with 10 crowns in each direction. In total, sixty crowns were printed. To measure the marginal and internal fit, a silicone replica was fabricated and the thickness of the silicone impression material was measured using a digital microscope. Sixteen reference points were set and divided into the following 4 groups: marginal gap (MG), cervical gap (CG), axial gap (AG), and occlusal gap (OG). The measurements were statistically analyzed using one-way ANOVA and Dunnett T3. RESULTS. MG, CG, and OG were significantly different by build angle groups (P<.05). The MG and CG were significantly larger in the 120° group than in other groups. OG was the smallest in the 150° and 180° and the largest in the 120° and 135° groups. CONCLUSION. The marginal and internal fit of the 3D-printed provisional crowns can vary depending on the build angle and the best fit was achieved with build angles of 150° and 180°.

A Study on Correlations of the Gap Ratio of Apartment Houses Arrangement and the Wind Field (공동주택단지배치의 간극비와 바람장의 상관관계에 관한 연구)

  • Moon, Chul-Seong;Oh, Se-Gyu;Cho, Sung-Woo
    • KIEAE Journal
    • /
    • v.11 no.2
    • /
    • pp.75-82
    • /
    • 2011
  • In Korea, the ratio of population in urban areas used to be only 50.1% in 1970, but with the value risen to 90.8% in 2009, urbanization is going on rapidly. Urbanization, which occurs by the rampantly planted buildings, has become major source of raising building density, changing wind direction and reducing wind amount, and such reductions are affecting even inside the building. In each year, among the total energy consumption in Korea, residential portion takes up significant ratio, and specifically the ratio of apartment house is shown to be highest. In order to solve such problem, many studies are being conducted for the improvement of natural ventilation performance. The natural ventilation performance of apartment house are significantly determined by the characteristics of external and internal structure, but in macroscopic perspective, the performance is established fundamentally by the layout characteristics of the main building of the apartment house in preparation for wind conditions. So far researches on raising the thermal comfort through elevation of ventilation performance have been conducted actively, but many of them propose only theoretical concepts deduced through wind path analysis, and do not include any indicator to measure ventilation performance simply only with area data from layout planning stage. Therefore, in this study, gap ratio a wind field measuring indicator was developed, and after the ventilation characteristics by layout types and main building uniformity were identified, the scope of gap ratio efficient for ventilation and that of uniformity were clarified, followed by verification through simulation.

The Relative Productivity to the Technology Frontier and Korea's Productivity Growth (기술선도국과의 상대적 생산성 수준과 한국 제조업 생산성간의 관계)

  • Choi, Yong-Seok
    • International Area Studies Review
    • /
    • v.12 no.2
    • /
    • pp.99-123
    • /
    • 2008
  • In this paper, technology gap between Korea's manufacturing industries compared to technology frontier countries was estimated in order to take into account Korea's status as a technology follower country. Then by using this measure the role of technology gap was investigated in explaining total factor productivity growth of the Korean manufacturing at industry level. The main empirical findings are as follows: First, the conventional factors that were emphasized in the previous literature such as R&D intensity, trade openness and human capital play important role in explaining the growth rate of Korea's total factor productivity. Second, the larger the technology gap between Korea and technology leader country (and the faster the technology growth rate in the leader country), the higher the growth rate of total factor productivity in Korea as well. Third when the technology gap is large, the most efficient way of absorbing higher technology from frontier country seems to be the international trade channel rather than R&D or human capital accumulation.

Inverse behavior of IL-23R and IL-17RA in chronic and aggressive periodontitis

  • Ruiz-Gutierrez, Alondra del Carmen;Rodriguez-Montano, Ruth;Pita-Lopez, Maria Luisa;Zamora-Perez, Ana Lourdes;Guerrero-Velazquez, Celia
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.4
    • /
    • pp.254-263
    • /
    • 2021
  • Purpose: Periodontitis is associated with a dysbiosis of periodontopathic bacteria, which stimulate the interleukin (IL)-23/IL-17 axis that plays an essential role in the immunopathogenesis of this disease, leading to alveolar bone destruction through receptor activator of nuclear factor κB ligand (RANKL). IL-23 receptor mRNA (IL-23R) has been identified in periodontitis, and IL-17 receptor A mRNA (IL-17RA) and its protein have not yet been evaluated in patients with periodontitis. In this study was measure IL-23R and IL-17RA in gingival tissue (GT) from patients with generalized chronic periodontitis (GCP) and generalized aggressive periodontitis (GAP) and to explore correlations with clinical parameters. Methods: We included 16 healthy subjects (HS), 18 patients with GCP, and 14 with GAP. GT samples were collected during periodontal surgery. Both IL-23R and IL-17RA were detected by enzyme-linked immunosorbent assay. Results: The results were analyzed with Mann-Whitney U test and Spearman' rank correlation coefficients using SPSS version 25.0. We found lower IL-23R levels in patients with GCP and GAP than in HS. Contrarily, we observed higher IL-17RA levels in GCP and GAP patients than in HS. Moreover, we found negative correlations between IL-23R in GT and probing depth and clinical attachment loss (CAL). Likewise, a positive correlation of IL-17RA in GT with CAL was found. Conclusions: The results of these findings suggest that the reverse behavior between IL-23R and IL-17RA in periodontitis patients may also be involved with the activation of RANKL, which promotes alveolar bone loss.

Push-out bond strength and marginal adaptation of apical plugs with bioactive endodontic cements in simulated immature teeth

  • Maria Aparecida Barbosa de Sa;Eduardo Nunes ;Alberto Nogueira da Gama Antunes ;Manoel Brito Junior ;Martinho Campolina Rebello Horta ;Rodrigo Rodrigues Amaral;Stephen Cohen ;Frank Ferreira Silveira
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.53.1-53.11
    • /
    • 2021
  • Objectives: This study evaluates the bond strength and marginal adaptation of mineral trioxide aggregate (MTA) Repair HP and Biodentine used as apical plugs; MTA was used as reference material for comparison. Materials and Methods: A total of 30 single-rooted teeth with standardized, artificially created open apices were randomly divided into 3 groups (n = 10 per group), according to the material used to form 6-mm-thick apical plugs: group 1 (MTA Repair HP); group 2 (Biodentine); and group 3 (white MTA). Subsequently, the specimens were transversely sectioned to obtain 2 (cervical and apical) 2.5-mm-thick slices per root. Epoxy resin replicas were observed under a scanning electron microscope to measure the gap size at the material/dentin interface (the largest and smaller gaps were recorded for each replica). The bond strength of the investigated materials to dentin was determined using the push-out test. The variable bond strengths and gap sizes were evaluated independently at the apical and cervical root dentin slices. Data were analyzed using descriptive and analytic statistics. Results: The comparison between the groups regarding the variables' bond strengths and gap sizes showed no statistical difference (p > 0.05) except for a single difference in the smallest gap at the cervical root dentin slice, which was higher in group 3 than in group 1 (p < 0.05). Conclusions: The bond strength and marginal adaptation to root canal walls of MTA HP and Biodentine cement were comparable to white MTA.

A Study on the Priority-Gap Measurement of Performance Factors Before and After Introduction of Electronic Price Information System in Retail Stores using IT-BSC and AHP (IT-BSC와 AHP를 사용한 유통매장 전자가격정보시스템 도입 전후 성과요인의 Priority-Gap 측정에 관한 연구)

  • Jae-Yong Yang;Sang-Ryul Lee
    • Information Systems Review
    • /
    • v.22 no.2
    • /
    • pp.53-76
    • /
    • 2020
  • This article is an exploratory empirical study on the introduction of the Electronic Shelf Labels (ESL) system, which is spreading to offline stores as a new price information system for retail stores in Korea. In order to conduct this study, eight measurement items were derived from the IT-BSC perspective as performance factors, and the AHP technique was used as a method for relative evaluation of priorities among the items. The survey, which was conducted for about 1 year and 6 months, examined changes in store employees' perceptions of performance factors before and after the introduction of the ESL system. The results showed that there were differences in high priority items between before and after introduction. This study suggests academic implications in that the AHP technique is used to measure the change in the perception of post-performance and expectation factors for products and services, and this study also suggests practical implications by raising the need for continuous improvement of products and services for customer value propositions that change with the maturity of the experience.

Anallysis of the flow and noise characteristics of small turbo fan in a ultra slim note PC (초박형 노트북 냉각 터보팬의 유동 및 소음 분석)

  • Jeon, W.H.;Lim, T.G.;Minorkkawa, Gaku;Miyahara, Masaharu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.775-780
    • /
    • 2013
  • In recent years, a notebook like an ultrabook gets thinner. Its thickness causes problems in cooling fan performance, system installation condition, and so on. In this study, we installed a small turbofan in notebook system with very narrow gap in order to generate similar condition to a real product. Experiments were performed to measure the fan's performance and the flow and noise characteristics, its results were compared with computational ones. Prediction of P-Q curve using CFD showed under about 5% error in high flow rate and its trend was agreed with experimental one over the flow field. Experimental data to measure the noise at a distance of 100 mm from a rotation axis direction of an impeller corresponded well with computational ones of broadband and BPF noise. The noise experiments to measure at a distance of 100 mm from a rotation axis direction of an impeller corresponded well with computational ones of broadband and BPF noise. Especially, tip part of impeller blade and part of exit and bottom near in an analysis by a commercial program(FlowNoise).

  • PDF

Dosimetric effects of couch attenuation and air gaps on prone breast radiation therapy (Prone Breast Phantom을 이용한 couch 산란영향 평가)

  • Kim, Min Seok;Jeon, Soo Dong;Bae, Sun Myeong;Baek, Geum Mun;Song, Heung Gwon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • Purpose: The purpose of this study is to evaluate the dosimetric effects of couch attenuation and air gaps using 3D phantom for prone breast radiation therapy. Materials and method: A 3D printer(Builder Extreme 1000) and computed tomography (CT) images of a breast cancer patient were used to manufacture the customized breast phantom. Eclipse External Beam Planning 13.6 (Varian Medical Systems Palo Alto, CA, USA) was used to create the treatment plan with a dose of 200 cGy per fraction with 6 MV energy. The Optically Stimulated Luminescence Detector(OSLD) was used to measure the skin dose at four points (Med 1, Med 2, Lat 1, Lat 2) on the 3D phantom and ion-chamber (FC65-G) were used to perform the in-vivo dosimetry at the two points (Anterior, Posterior). The Skin dose and in-vivo dosimetry were measured with reference air gap (3 cm) and increased air gaps (1, 2, 3, 4, 5, 6 cm) from reference distance between the couch and 3D phantom. Results: As a result, measurement for the skin dose at lateral point showed a similar value within ${\pm}4%$ compared to the plan. While the air gap increased, skin dose at medial 1 was reduced. And it was also reduced over 7 % when the air gap was more than 3 cm compared to radiation therapy plan. At medial 2 it was reduced over 4 % as well. The changes of dose from variety of the air gap showed similar value within ${\pm}1%$ at posterior. As the air gap was increased, the dose at anterior was also increased and it was increased by 1 % from the air gap distance more than 3 cm. Conclusion: Dosimetrical measurement using 3D phantom is very useful to evaluate the dosimetric effects of couch attenuation and air gaps for prone breast radiation therapy. And it is possible to reduce the skin dose and increase the accuracy of the radiation dose delivery by appling the optimized air gap.

  • PDF