• Title/Summary/Keyword: Gap Flow

Search Result 986, Processing Time 0.028 seconds

Prediction and Measurement of Residual Stresses in Injection Molded Parts

  • Kwon, Young-Il;Kang, Tae-Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.203-211
    • /
    • 2001
  • Residual stresses were predicted by a flow analysis in the mold cavity and residual stress distribution in the injection molded product was measured. Flow field was analyzed by the hybrid FEM/FDM method, using the Hele Shaw approximation. The Modified Cross model was used to determine the dependence of the viscosity on the temperature and the shear rate. The specific volume of the polymer melt which varies with the pressure and temperature fields was calculated by the Tait\`s state equation. Flow analysis results such as pressure, temperature, and the location of the liquid-solid interface were used as the input of the stress analysis. In order to calculate more accurate gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise direction was predicted in two cases, the free quenching, under the assumption that the shrinkage of the injection molded product occurs within the mold cavity and that the solid polymer is elastic. Effects of the initial flow rate, packing pressure, and mold temperature on the residual stress distribution was discussed. Experimental results were also obtained by the layer removal method for molded polypropylene.

  • PDF

Visualization of the Flow Pattern Between Co-rotating Disks in HDD (HDD의 동시 회전 디스크 내부 유동 패턴의 가시화)

  • Kong Dae-Wee;Joo Won-Gu;Doh Deug-Hee
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.67-70
    • /
    • 2003
  • Hard disk drives (HDD) in computer are used extensively as data storage capacity. The trend in the computer industry to produce smaller disk drives rotating at higher speeds requires an improved understanding of fluid motion in the space between disks. Laser sheet and digital camera was used for 2-dimensional visualization of the unsteady flow between the center pair of two co-rotating disks in air with a cylindrical enclosure (or shroud). Geometric parameters are gap height (H) between disks, and gap distance (G) between disk tip and shroud. The lobe-structured boundary between inner region and outer region was detected by inserted particles, and the number of dominant vortices was determined clearly It is found from flow visualization that the number of vortex cells can be correlated with Reynolds number based on H which is defined as $Re_H={\Omega}RH/v$ ranging from $3.18\times10^3\;to\;1.43\times10^4$, and decreases as the disk speed increases. The lobe pattern by vortex cells is changed to a circular pattern for the wide gap than narrow one.

  • PDF

Remote Field Energy Flow Path at Nonmagnetic Coaxial Tubes (비자성체 이중관의 원격장 에너지 전달 경로)

  • Yi, Jae-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.526-531
    • /
    • 2001
  • The flow of remote field eddy current energy is studied at nonmagnetic coaxial tubes by using both experiments and finite element calculations based on commercial software package. The results showed that remote field eddy current energy at coaxial tubes flow along over the outer surface of external tube, not through the gap between internal and external tubes. This means that the through wall transmission characteristic of remote field eddy current testing (RFECT) is still valid at tube in tube configurations and the RFECT could be potential nondestructive technique for crack detection, spacer location and gap sizing at the coaxial CANDU fuel channel tubes.

  • PDF

A Study of rotor-stator interaction in an axial fan (축류송풍기의 동익과 정익 사이 간격변화에 따른 유동간섭에 관한 연구)

  • Rim, In-Won;Seon, Ho-Su;Joo, Won-Gu;Cho, Kang-Rae
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.819-824
    • /
    • 2000
  • The flow inside an axial turbomachinery must be unsteady. Rotor-stator interaction by two blade rows influences performance, the generation of noise and vibration. So, it will be necessary to study the rotor-stator interaction for the design of an axial fan in which the axial gap between two blade rows is small. In this study, rotor-stator interaction is investigated by experimental methods. The research fan has one stage which consists of 24 rotor blades and 22 stator blades. Three-dimensional velocities measured using $45^{\circ}$ slanted hot wire probe and total pressure is measured using Kiel total pressure probe between rotor and stator with the axial 25%, 55%, 145% of chord length,. This study describes the influence of rotor-stator gap on the flow pattern, performance and loss. The efficiency curve show that the change of the rotor-stator gap make difference in the efficiency. And, the 3-dimensional velocity distribution show that the potential interaction between the rotor and the stator have a great effect on the flow field downstream of rotor, where there are wake flow. various vortices in hub region and leakage vortex in casing region etc.

  • PDF

Visualization of the Flow Pattern Between Co-rotating Disks in Shroud (원통형 케이스 내의 동시회전 디스크 내부 유동패턴의 가시화)

  • Kong, Dae-Wee;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1661-1665
    • /
    • 2004
  • Hard disk drives (HDD) in computer are used extensively as data storage capacity. The trend in the computer industry to produce smaller disk drives rotating at higher speeds requires an improved understanding of fluid motion in the space between disks. Laser sheet and digital camera was used for 2-dimensional visualization of the unsteady flow between co-rotating disks in air with a cylindrical enclosure (or shroud). Geometric parameters are gap height (H) between disks, and gap distance (G) between disk tip and shroud. The lobe-structured boundary between inner region and outer region was detected by inserted particles, and the number of dominant vortices was determined clearly It is found from flow visualization that the number of vortex cells can be correlated with Reynolds number based on H which is defined as $Re_H={\Omega}RH/v$ ranging from $7.96{\times}10^2$ to $1.43{\times}10^4$, and decreases as the disk speed increases. The lobe pattern by vortex cells is changed to a circular pattern for the wide gap than narrow one.

  • PDF

Effects of Discrete Ribs on Pressure Drop in a Rotating Two-Pass Duct (단락요철이 회전덕트 내 압력강하에 미치는 영향)

  • Kim Kyung-Min;Lee Dong-Hyun;Cho Hyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.443-450
    • /
    • 2006
  • The present study has been conducted to investigate the effects of rotation on heat/mass transfer and pressure drop characteristics in a two-pass square duct with and without discrete ribs. For stationary cases, the heat/mass transfer on the surfaces with and without discrete ribs is almost the same or reduced. For rotating cases, the gap flow affects differently the heat/mass transfer on leading and trailing surfaces with discrete ribs. On the leading surface of the first pass, the heat/mass transfer is slightly enhanced due to generating strong gap flow. On the trailing surface of the first pass, however, the heat/mass transfer is much decreased because the gap flow disturbs impingement of main flow. The phenomenon, that is, the heat/mass transfer discrepancy between the leading and trailing surfaces is distinctly presented with the increment of rotation number. The friction losses on each surface with discrete ribs are reduced because the blockage ratio decreases for both non-rotating and rotating cases. Therefore, high thermal performance appears in a duct with discrete ribs.

Flow Characteristics with Distance between Solid Propellant Grain and Igniter (고체 추진제와 점화기 간 간격에 따른 유동 특성)

  • Kang, Donggi;Choi, Jaesung;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.96-107
    • /
    • 2018
  • Flow analysis using computational fluid dynamics was conducted to investigate the effect of the igniter flame caused by the gap between the igniter and the propellant grain in a solid rocket motor. Two propellant grain types were assumed; namely cylinder type (1 mm, 3 mm, and 5 mm gap) and the slot type. The slot type had two igniter hole locations. One was located at the small gap of the propellant grain, and the other one was located at the large gap. In the case of the cylinder type, the pressure in the igniter zone was higher with a thinner gap. Additionally, in the case of the cylinder type, the pressure difference between the igniter installed zone and the free volume was also higher as the gap became lower. The cylinder types were affected by the gap distance, but the slot types were not. Moreover, the results of the slot types were similar to the 5-mm gap case of the cylinder type.

Effects of Flow Diretion and Annular Gap Size on the Flow Pattern and Void Distribution in a Vertical Two-Phase Flow(I) - In Case of Upward Flow - (수직이상유에서 유동방향과 동심원관 간극이 유동양식과 보이드분포에 미치는 영향 (I))

  • 손병진;김인석;김문철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.856-866
    • /
    • 1987
  • In the present paper a statistical method using probability density function has been applied to investigate experimentally the flow patterns and fluctuations of time-averaged local void fraction in air-water two-phase mixtures which flow vertically upwards in concentric annuli. This study was carried out using three vertical concentric annuli. The annular test section consists of a lucite outer tube whose inside diameter is 38mm and a stainless steel inner rod. The rod diameter is either 12mm, 16mm or 20mm. The two-phase flow patterns observed in the experiment were bubbly, slug, annular and each transition patterns. It was first demonstrated that the variance, coefficients of skewness and kurtosis calculated from probability density function on time-averaged local void fraction can be used to identify the flow patterns in the annular passage, and the fluctuation of time-averaged local void fraction varies with the radial position in annular gap and the flow pattern.

Band Gap and Defect Sites of Silicon Nitride for Crystalline Silicon Solar Cells (단결정 실리콘 태양전지를 위한 실리콘 질화막의 밴드갭과 결함사이트)

  • Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.365-365
    • /
    • 2010
  • In this paper, silicon nitride thin films with different silane and ammonia gas ratios were deposited and characterized for the antireflection and passivation layer of high efficiency single crystalline silicon solar cells. As the flow rate of the ammonia gas increased, the refractive index decreased and the band gap increased. Consequently, the transmittance increased due to the higher band gap and the decrease of the defect states which existed for the 1.68 and 1.80 eV in the SiNx films. The reduction in the carrier lifetime of the SiNx films deposited by using a higher $NH_3/SiH_4$ flow ratio was caused by the increase of the interface traps and the defect states in/on the interface between the SiNx and the silicon wafer. The silicon and nitrogen rich films are not suitable for generating both higher carrier lifetimes and transmittance. These results indicate that the band gap and the defect states of the SiNx films should be carefully controlled in order to obtain the maximum efficiency for c-Si solar cells.

  • PDF

An Experimental Study of 3-D Axial Type Turbine Performance with Various Axial Gaps between the Rotor and Stator (축류형 터빈에서 정${\cdot}$동익 축방향 거리의 변화에 대한 실험적 연구)

  • Kim Jong-Ho;Kim Eun-Jong;Cho Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.541-544
    • /
    • 2002
  • The turbine performance test of an axial-type turbine is carried out with various axial gap distances between the stator and rotor. The turbine is operated at the low pressure and speed, and the degree of reaction is 0.373 at the mean radius. The axial-type turbine consists of ons-stage and 3-dimensional blades. The chord length of rotor is 28.2mm and mean diameter of turbine is 257.56mm. The power of turbo-blower for input power is 30kW and mass flow rate is $340m^3/min\;at\;290mmAq$ static-pressure. The RPM and output power are controlled by a dynamometer connected directly to the turbine shaft. The axial gap distances are changed from a quarter to two times of stator axial chord length, and performance curves are obtained with 7 different axial gaps. The efficiency is dropped about $5{\%}$ of its highest value due to the variation of axial gap on the same non-dimensional mass flow rate and RPM, and experimental results show that the optimum axial gap is 1.0-1.5Cx.

  • PDF