• Title/Summary/Keyword: Gap 측정

Search Result 1,042, Processing Time 0.022 seconds

INFLUENCES OF DRY METHODS OF RETROCAVITY ON THE APICAL SEAL (치근단 역충전와동의 건조방법이 폐쇄성에 미치는 영향)

  • Lee, Jung-Tae;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.166-179
    • /
    • 1999
  • Apical sealing is essential for the success of surgical endodontic treatment. Root-end cavity is apt to be contaminated with moisture or blood, and is not always easy to be dried completely. The purpose of this study was to evaluate the influence of dry methods of retrocavity on the apical seal in endodontic surgery. Apical seal was investigated through the evaluation of apical leakage and adaptation of filling material over the cavity wall. To investigate the influence of various dry methods on the apical leakage, 125 palatal roots of extracted human maxillary molar teeth were used. The clinical crown of each tooth was removed at 10 mm from the root apex using a slow-speed diamond saw and water spray. Root canals of the all the specimens were prepared with step-back technique and filled with gutta-percha by lateral condensation method. After removing of the coronal 2 mm of filling material, the access cavities were closed with Cavit$^{(R)}$. Two coats of nail polish were applied to the external surface of each root. Apical three millimeters of each root was resected perpendicular to the long axis of the root with a diamond saw. Class I retrograde cavities were prepared with ultrasonic instruments. Retrocavities were washed with physiologic saline solution and dried with various methods or contaminated with human blood. Retrocavities were filled either with IRM, Super EBA or composite resin. All the specimens were immersed in 2% methylene blue solution for 7 days in an incubator at $37^{\circ}C$. The teeth were dissolved in 14 ml of 35% nitric acid solution and the dye present within the root canal system was returned to solution. The leakage of dye was quantitatively measured via spectrophotometric method. The obtained data were analysed statistically using one-way ANOVA and Duncan's Multiple Range Test. To evaluate the influence of various dry methods on the adaptation of filling material over the cavity wall, 12 palatal roots of extracted human maxillary molar teeth were used. After all the roots were prepared and filled, and retrograde cavities were made and filled as above, roots were sectioned longitudinally. Filling-dentin interface of cut surfaces were examined by scanning electron microscope. The results were as follows: 1. Cavities dried with paper point or compressed air showed less leakage than those dried with cotton pellet in Super EBA filled cavity (p<0.05). However, there was no difference between paper point- and compressed air-dried cavities. 2. When cavities were dried with compressed air, dentin-bonded composite resin-filled cavities showed less apical leakage than IRM- or Super EBA-filled ones (p<0.05). 3. Regardless of the filling material, cavities contaminated with human blood showed significantly more apical leakage than those dried with compressed air after saline irrigation (p<0.05). 4. Outer half of the cavity showed larger dentin-filling interface gap than inner half did when cavities were filled with IRM or Super EBA. 5. In all the filling material groups, cavities contaminated with blood or dried with cotton pellets only showed larger defects at the base of the cavity than ones dried with paper points or compressed air.

  • PDF

A Study on the Morphological Structure of Sasul-Sijo (사설시조의 형태구조 연구)

  • Won, Yong-Moon
    • Sijohaknonchong
    • /
    • v.23
    • /
    • pp.161-188
    • /
    • 2005
  • The purpose of this study was to delve into the morphological types of Sijo in an effort to determine the morphological structure of Sasul-sijo, and it's also attempted to present standard about how to discriminate Pyong-si, Eos-sijo and Sasul-sijo from one another from a morphological standpoint. It's suggested that Si with tee Jangs, six verses and 12 stanzas or more, with three Jangs, seven verses and 14 stanzas or more, and with three Jangs, eight verses and 16 stanzas or more should respectively be called Pyong-sijo, Eos-sijo and Sasul-sijo. After what Sijo was and what's not were discussed, how to distinguish Eos-sijo from Sasul-sijo was described, and finally, the structure of Sasul-sijo was presented. As for Sijo and non-Sijo, the types of works that consisted of tee Jangs, like Sijo, yet didn't suit its framework and Yuljo and were written in Chinese characters were regarded as non-Sijo. Concerning discrimination between Eos-si and Sasul-sijo, the type of Sijo that included one more or higher number of verse(s) and two more or higher number of stanzas in one of three Jangs was defined as Eos-sijo, and the type of Sijo that involved two more or higher number of verses and four more or higher number of stanzas in one of three Jangs was called Sasul-sijo. In other words, Eos-sijo contained one more verse in one of tee Jangs, and Sasul-sijo included one more Jang in one tee Jangs. The sort of Sijo that contained one more Jang in one of three Jangs could be viewed as Sasul-sijo. Regarding the structure of Sasul-si, there should be three Jangs, eight verses and 16 stanzas in one piece of Sasul-sijo. Any type of Sijo that contained two more or higher number of verses and four more or higher number of stanzas could be called Sasul-sijo. Such an addition of verse and stanza could done in various ways. The examples were (1) adding stanzas the first Jang, 2) adding stanzas to the second Jang, (3) adding stanzas to the final Jang, (4) adding stanzas to both the first and Second Jangs, (5) adding stanzas to th the second and final Jangs, and (6) adding stanzas to all the first, second and third Jangs at the same time. Besides, there was an extremely broad gap between the numbers of verse and stanza in Sasul-sijo, which ranged from a low of eight stanzas to a high of 87 ones in one of three Jangs.

  • PDF